Relative zeta determinants and the geometry of the determinant line bundle
Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 8-16.

Voir la notice de l'article provenant de la source American Mathematical Society

The spectral $\zeta$-function regularized geometry of the determinant line bundle for a family of first-order elliptic operators over a closed manifold encodes a subtle relation between the local family’s index theorem and fundamental non-local spectral invariants. A great deal of interest has been directed towards a generalization of this theory to families of elliptic boundary value problems. We give here precise formulas for the relative zeta metric and curvature in terms of Fredholm determinants and traces of operators over the boundary. This has consequences for anomalies over manifolds with boundary.
DOI : 10.1090/S1079-6762-01-00089-0

Scott, Simon 1

1 Department of Mathematics, King’s College, London WC2R 2LS, U.K.
@article{ERAAMS_2001_07_a2,
     author = {Scott, Simon},
     title = {Relative zeta determinants and the geometry of the determinant line bundle},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {8--16},
     publisher = {mathdoc},
     volume = {07},
     year = {2001},
     doi = {10.1090/S1079-6762-01-00089-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00089-0/}
}
TY  - JOUR
AU  - Scott, Simon
TI  - Relative zeta determinants and the geometry of the determinant line bundle
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2001
SP  - 8
EP  - 16
VL  - 07
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00089-0/
DO  - 10.1090/S1079-6762-01-00089-0
ID  - ERAAMS_2001_07_a2
ER  - 
%0 Journal Article
%A Scott, Simon
%T Relative zeta determinants and the geometry of the determinant line bundle
%J Electronic research announcements of the American Mathematical Society
%D 2001
%P 8-16
%V 07
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00089-0/
%R 10.1090/S1079-6762-01-00089-0
%F ERAAMS_2001_07_a2
Scott, Simon. Relative zeta determinants and the geometry of the determinant line bundle. Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 8-16. doi : 10.1090/S1079-6762-01-00089-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00089-0/

[1] Bismut, Jean-Michel, Freed, Daniel S. The analysis of elliptic families. I. Metrics and connections on determinant bundles Comm. Math. Phys. 1986 159 176

[2] Forman, Robin Functional determinants and geometry Invent. Math. 1987 447 493

[3] Grubb, Gerd Trace expansions for pseudodifferential boundary problems for Dirac-type operators and more general systems Ark. Mat. 1999 45 86

[4] Grubb, Gerd, Seeley, Robert T. Zeta and eta functions for Atiyah-Patodi-Singer operators J. Geom. Anal. 1996 31 77

[5] Lesch, Matthias, Tolksdorf, Jürgen On the determinant of one-dimensional elliptic boundary value problems Comm. Math. Phys. 1998 643 660

[6] Pressley, Andrew, Segal, Graeme Loop groups 1986

[7] Kvillen, D. Determinants of Cauchy-Riemann operators on Riemann surfaces Funktsional. Anal. i Prilozhen. 1985

[8] Scott, Simon Splitting the curvature of the determinant line bundle Proc. Amer. Math. Soc. 2000 2763 2775

Cité par Sources :