On Noether’s bound for polynomial invariants of a finite group
Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 5-7.

Voir la notice de l'article provenant de la source American Mathematical Society

E. Noether’s a priori bound, viz., the group order $g$, for the degrees of generating polynomial invariants of a finite group, is extended from characteristic 0 to characteristic prime to $g$.
DOI : 10.1090/S1079-6762-01-00088-9

Fogarty, John 1

1 Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515
@article{ERAAMS_2001_07_a1,
     author = {Fogarty, John},
     title = {On {Noether{\textquoteright}s} bound for polynomial invariants of a finite group},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {5--7},
     publisher = {mathdoc},
     volume = {07},
     year = {2001},
     doi = {10.1090/S1079-6762-01-00088-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00088-9/}
}
TY  - JOUR
AU  - Fogarty, John
TI  - On Noether’s bound for polynomial invariants of a finite group
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2001
SP  - 5
EP  - 7
VL  - 07
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00088-9/
DO  - 10.1090/S1079-6762-01-00088-9
ID  - ERAAMS_2001_07_a1
ER  - 
%0 Journal Article
%A Fogarty, John
%T On Noether’s bound for polynomial invariants of a finite group
%J Electronic research announcements of the American Mathematical Society
%D 2001
%P 5-7
%V 07
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00088-9/
%R 10.1090/S1079-6762-01-00088-9
%F ERAAMS_2001_07_a1
Fogarty, John. On Noether’s bound for polynomial invariants of a finite group. Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 5-7. doi : 10.1090/S1079-6762-01-00088-9. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00088-9/

[1] Smith, Larry Polynomial invariants of finite groups. A survey of recent developments Bull. Amer. Math. Soc. (N.S.) 1997 211 250

[2] Venkatarayudu, T. The 7-15 problem Proc. Indian Acad. Sci., Sect. A. 1939 531

Cité par Sources :