The groups of order at most 2000
Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 1-4.

Voir la notice de l'article provenant de la source American Mathematical Society

We announce the construction up to isomorphism of the $49 910 529 484$ groups of order at most 2000.
DOI : 10.1090/S1079-6762-01-00087-7

Besche, Hans 1 ; Eick, Bettina 2 ; O’Brien, E. 3

1 Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany
2 Fachbereich Mathematik, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
3 Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand
@article{ERAAMS_2001_07_a0,
     author = {Besche, Hans and Eick, Bettina and O{\textquoteright}Brien, E.},
     title = {The groups of order at most 2000},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {1--4},
     publisher = {mathdoc},
     volume = {07},
     year = {2001},
     doi = {10.1090/S1079-6762-01-00087-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00087-7/}
}
TY  - JOUR
AU  - Besche, Hans
AU  - Eick, Bettina
AU  - O’Brien, E.
TI  - The groups of order at most 2000
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2001
SP  - 1
EP  - 4
VL  - 07
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00087-7/
DO  - 10.1090/S1079-6762-01-00087-7
ID  - ERAAMS_2001_07_a0
ER  - 
%0 Journal Article
%A Besche, Hans
%A Eick, Bettina
%A O’Brien, E.
%T The groups of order at most 2000
%J Electronic research announcements of the American Mathematical Society
%D 2001
%P 1-4
%V 07
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00087-7/
%R 10.1090/S1079-6762-01-00087-7
%F ERAAMS_2001_07_a0
Besche, Hans; Eick, Bettina; O’Brien, E. The groups of order at most 2000. Electronic research announcements of the American Mathematical Society, Tome 07 (2001), pp. 1-4. doi : 10.1090/S1079-6762-01-00087-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-01-00087-7/

[1] Besche, Hans Ulrich, Eick, Bettina Construction of finite groups J. Symbolic Comput. 1999 387 404

[2] Eick, Bettina, O’Brien, E. A. Enumerating 𝑝-groups J. Austral. Math. Soc. Ser. A 1999 191 205

[3] Hall, Marshall, Jr., Senior, James K. The groups of order 2ⁿ(𝑛≤6) 1964 225

[4] Higman, Graham Enumerating 𝑝-groups. I. Inequalities Proc. London Math. Soc. (3) 1960 24 30

[5] Laue, Reinhard Zur Konstruktion und Klassifikation endlicher auflösbarer Gruppen Bayreuth. Math. Schr. 1982

[6] Newman, M. F. Determination of groups of prime-power order 1977 73 84

[7] Computational algebra and number theory 1997 233 506

[8] O’Brien, E. A. The 𝑝-group generation algorithm J. Symbolic Comput. 1990 677 698

[9] Pyber, László Asymptotic results for permutation groups 1993 197 219

[10] Sims, Charles C. Enumerating 𝑝-groups Proc. London Math. Soc. (3) 1965 151 166

Cité par Sources :