Metric with ergodic geodesic flow is completely determined by unparameterized geodesics
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 98-104.

Voir la notice de l'article provenant de la source American Mathematical Society

Let $g$ be a Riemannian metric with ergodic geodesic flow. Then if some metric $\bar g$ has the same geodesics (regarded as unparameterized curves) with $g$, then the metrics are homothetic. If two metrics on a closed surface of genus greater than one have the same geodesics, then they are homothetic.
DOI : 10.1090/S1079-6762-00-00086-X

Matveev, Vladimir 1 ; Topalov, Petar 2

1 Isaac Newton Institute, Cambridge CB3 0EH, UK
2 Department of Differential Equations, Institute of Mathematics and Informatics, BAS, Acad. G. Bonchev Street, Bl. 8, Sofia 1113, Bulgaria
@article{ERAAMS_2000_06_a12,
     author = {Matveev, Vladimir and Topalov, Petar},
     title = {Metric with ergodic geodesic flow is completely determined by unparameterized geodesics},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {98--104},
     publisher = {mathdoc},
     volume = {06},
     year = {2000},
     doi = {10.1090/S1079-6762-00-00086-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00086-X/}
}
TY  - JOUR
AU  - Matveev, Vladimir
AU  - Topalov, Petar
TI  - Metric with ergodic geodesic flow is completely determined by unparameterized geodesics
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2000
SP  - 98
EP  - 104
VL  - 06
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00086-X/
DO  - 10.1090/S1079-6762-00-00086-X
ID  - ERAAMS_2000_06_a12
ER  - 
%0 Journal Article
%A Matveev, Vladimir
%A Topalov, Petar
%T Metric with ergodic geodesic flow is completely determined by unparameterized geodesics
%J Electronic research announcements of the American Mathematical Society
%D 2000
%P 98-104
%V 06
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00086-X/
%R 10.1090/S1079-6762-00-00086-X
%F ERAAMS_2000_06_a12
Matveev, Vladimir; Topalov, Petar. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 98-104. doi : 10.1090/S1079-6762-00-00086-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00086-X/

[1] Ballmann, Werner Lectures on spaces of nonpositive curvature 1995

[2] Birkhoff, George D. Dynamical systems 1966

[3] Kiyohara, Kazuyoshi Compact Liouville surfaces J. Math. Soc. Japan 1991 555 591

[4] Kobayashi, Shoshichi Transformation groups in differential geometry 1995

[5] Kolokol′Tsov, V. N. Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial with respect to velocities Izv. Akad. Nauk SSSR Ser. Mat. 1982

[6] Matveev, V. S., Topalov, P. Ĭ. Trajectory equivalence and corresponding integrals Regul. Chaotic Dyn. 1998 30 45

[7] Topalov, P. I. Tensor invariants of natural mechanical systems on compact surfaces, and their corresponding integrals Mat. Sb. 1997 137 157

[8] Erdös, P., Grünwald, T. On polynomials with only real roots Ann. of Math. (2) 1939 537 548

Cité par Sources :