The flow completion of a manifold with vector field
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 95-97
Cet article a éte moissonné depuis la source American Mathematical Society
For a vector field $X$ on a smooth manifold $M$ there exists a smooth but not necessarily Hausdorff manifold $M_{\mathbb {R}}$ and a complete vector field $X_{\mathbb {R}}$ on it which is the universal completion of $(M,X)$.
Affiliations des auteurs :
Kamber, Franz 1 ; Michor, Peter 2
@article{10_1090_S1079_6762_00_00083_4,
author = {Kamber, Franz and Michor, Peter},
title = {The flow completion of a manifold with vector field},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {95--97},
year = {2000},
volume = {06},
doi = {10.1090/S1079-6762-00-00083-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00083-4/}
}
TY - JOUR AU - Kamber, Franz AU - Michor, Peter TI - The flow completion of a manifold with vector field JO - Electronic research announcements of the American Mathematical Society PY - 2000 SP - 95 EP - 97 VL - 06 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00083-4/ DO - 10.1090/S1079-6762-00-00083-4 ID - 10_1090_S1079_6762_00_00083_4 ER -
%0 Journal Article %A Kamber, Franz %A Michor, Peter %T The flow completion of a manifold with vector field %J Electronic research announcements of the American Mathematical Society %D 2000 %P 95-97 %V 06 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00083-4/ %R 10.1090/S1079-6762-00-00083-4 %F 10_1090_S1079_6762_00_00083_4
Kamber, Franz; Michor, Peter. The flow completion of a manifold with vector field. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 95-97. doi: 10.1090/S1079-6762-00-00083-4
[1] , Differential geometry of 𝔤-manifolds Differential Geom. Appl. 1995 371 403
Cité par Sources :