Voir la notice de l'article provenant de la source American Mathematical Society
Kamber, Franz 1 ; Michor, Peter 2
@article{ERAAMS_2000_06_a11, author = {Kamber, Franz and Michor, Peter}, title = {The flow completion of a manifold with vector field}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {95--97}, publisher = {mathdoc}, volume = {06}, year = {2000}, doi = {10.1090/S1079-6762-00-00083-4}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00083-4/} }
TY - JOUR AU - Kamber, Franz AU - Michor, Peter TI - The flow completion of a manifold with vector field JO - Electronic research announcements of the American Mathematical Society PY - 2000 SP - 95 EP - 97 VL - 06 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00083-4/ DO - 10.1090/S1079-6762-00-00083-4 ID - ERAAMS_2000_06_a11 ER -
%0 Journal Article %A Kamber, Franz %A Michor, Peter %T The flow completion of a manifold with vector field %J Electronic research announcements of the American Mathematical Society %D 2000 %P 95-97 %V 06 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00083-4/ %R 10.1090/S1079-6762-00-00083-4 %F ERAAMS_2000_06_a11
Kamber, Franz; Michor, Peter. The flow completion of a manifold with vector field. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 95-97. doi : 10.1090/S1079-6762-00-00083-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00083-4/
[1] Differential geometry of 𝔤-manifolds Differential Geom. Appl. 1995 371 403
,Cité par Sources :