The flow completion of a manifold with vector field
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 95-97.

Voir la notice de l'article provenant de la source American Mathematical Society

For a vector field $X$ on a smooth manifold $M$ there exists a smooth but not necessarily Hausdorff manifold $M_{\mathbb {R}}$ and a complete vector field $X_{\mathbb {R}}$ on it which is the universal completion of $(M,X)$.
DOI : 10.1090/S1079-6762-00-00083-4

Kamber, Franz 1 ; Michor, Peter 2

1 Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801
2 Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria; and: Erwin Schrödinger Institut für Mathematische Physik, Boltzmanngasse 9, A-1090 Wien, Austria
@article{ERAAMS_2000_06_a11,
     author = {Kamber, Franz and Michor, Peter},
     title = {The flow completion of a manifold with vector field},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {95--97},
     publisher = {mathdoc},
     volume = {06},
     year = {2000},
     doi = {10.1090/S1079-6762-00-00083-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00083-4/}
}
TY  - JOUR
AU  - Kamber, Franz
AU  - Michor, Peter
TI  - The flow completion of a manifold with vector field
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2000
SP  - 95
EP  - 97
VL  - 06
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00083-4/
DO  - 10.1090/S1079-6762-00-00083-4
ID  - ERAAMS_2000_06_a11
ER  - 
%0 Journal Article
%A Kamber, Franz
%A Michor, Peter
%T The flow completion of a manifold with vector field
%J Electronic research announcements of the American Mathematical Society
%D 2000
%P 95-97
%V 06
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00083-4/
%R 10.1090/S1079-6762-00-00083-4
%F ERAAMS_2000_06_a11
Kamber, Franz; Michor, Peter. The flow completion of a manifold with vector field. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 95-97. doi : 10.1090/S1079-6762-00-00083-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00083-4/

[1] Alekseevsky, D. V., Michor, Peter W. Differential geometry of 𝔤-manifolds Differential Geom. Appl. 1995 371 403

Cité par Sources :