Minimal varieties of algebras of exponential growth
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 40-44.

Voir la notice de l'article provenant de la source American Mathematical Society

The exponent of a variety of algebras over a field of characteristic zero has been recently proved to be an integer. Through this scale we can now classify all minimal varieties of a given exponent and of finite basic rank. As a consequence we describe the corresponding T-ideals of the free algebra, and we compute the asymptotics of the related codimension sequences. We then verify in this setting some known conjectures.
DOI : 10.1090/S1079-6762-00-00078-0

Giambruno, A. 1 ; Zaicev, M. 2

1 Dipartimento di Matematica ed Applicazioni, Università di Palermo, 90123 Palermo, Italy
2 Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow 119899, Russia
@article{ERAAMS_2000_06_a4,
     author = {Giambruno, A. and Zaicev, M.},
     title = {Minimal varieties of algebras of exponential growth},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {40--44},
     publisher = {mathdoc},
     volume = {06},
     year = {2000},
     doi = {10.1090/S1079-6762-00-00078-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00078-0/}
}
TY  - JOUR
AU  - Giambruno, A.
AU  - Zaicev, M.
TI  - Minimal varieties of algebras of exponential growth
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2000
SP  - 40
EP  - 44
VL  - 06
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00078-0/
DO  - 10.1090/S1079-6762-00-00078-0
ID  - ERAAMS_2000_06_a4
ER  - 
%0 Journal Article
%A Giambruno, A.
%A Zaicev, M.
%T Minimal varieties of algebras of exponential growth
%J Electronic research announcements of the American Mathematical Society
%D 2000
%P 40-44
%V 06
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00078-0/
%R 10.1090/S1079-6762-00-00078-0
%F ERAAMS_2000_06_a4
Giambruno, A.; Zaicev, M. Minimal varieties of algebras of exponential growth. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 40-44. doi : 10.1090/S1079-6762-00-00078-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00078-0/

[1] Berele, Allan Generic verbally prime PI-algebras and their GK-dimensions Comm. Algebra 1993 1487 1504

[2] Berele, Allan, Regev, Amitai On the codimensions of the verbally prime P.I. algebras Israel J. Math. 1995 239 247

[3] Berele, A., Regev, A. Codimensions of products and of intersections of verbally prime 𝑇-ideals Israel J. Math. 1998 17 28

[4] Drenski, Veselin S. Extremal varieties of algebras. I Serdica 1987 320 332

[5] Drenski, Veselin S. Extremal varieties of algebras. II Serdica 1988 20 27

[6] Giambruno, A., Zaicev, M. On codimension growth of finitely generated associative algebras Adv. Math. 1998 145 155

[7] Giambruno, A., Zaicev, M. Exponential codimension growth of PI algebras: an exact estimate Adv. Math. 1999 221 243

[8] Kemer, A. R. The Spechtian nature of 𝑇-ideals whose condimensions have power growth Sibirsk. Mat. Ž. 1978

[9] Kemer, Aleksandr Robertovich Ideals of identities of associative algebras 1991

[10] Lewin, Jacques A matrix representation for associative algebras. I, II Trans. Amer. Math. Soc. 1974

[11] Procesi, Claudio Non-commutative affine rings Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 1967 237 255

[12] Regev, Amitai Existence of identities in 𝐴⊗𝐵 Israel J. Math. 1972 131 152

[13] Regev, Amitai Codimensions and trace codimensions of matrices are asymptotically equal Israel J. Math. 1984 246 250

Cité par Sources :