Voir la notice de l'article provenant de la source American Mathematical Society
Giambruno, A. 1 ; Zaicev, M. 2
@article{ERAAMS_2000_06_a4, author = {Giambruno, A. and Zaicev, M.}, title = {Minimal varieties of algebras of exponential growth}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {40--44}, publisher = {mathdoc}, volume = {06}, year = {2000}, doi = {10.1090/S1079-6762-00-00078-0}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00078-0/} }
TY - JOUR AU - Giambruno, A. AU - Zaicev, M. TI - Minimal varieties of algebras of exponential growth JO - Electronic research announcements of the American Mathematical Society PY - 2000 SP - 40 EP - 44 VL - 06 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00078-0/ DO - 10.1090/S1079-6762-00-00078-0 ID - ERAAMS_2000_06_a4 ER -
%0 Journal Article %A Giambruno, A. %A Zaicev, M. %T Minimal varieties of algebras of exponential growth %J Electronic research announcements of the American Mathematical Society %D 2000 %P 40-44 %V 06 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00078-0/ %R 10.1090/S1079-6762-00-00078-0 %F ERAAMS_2000_06_a4
Giambruno, A.; Zaicev, M. Minimal varieties of algebras of exponential growth. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 40-44. doi : 10.1090/S1079-6762-00-00078-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00078-0/
[1] Generic verbally prime PI-algebras and their GK-dimensions Comm. Algebra 1993 1487 1504
[2] On the codimensions of the verbally prime P.I. algebras Israel J. Math. 1995 239 247
,[3] Codimensions of products and of intersections of verbally prime 𝑇-ideals Israel J. Math. 1998 17 28
,[4] Extremal varieties of algebras. I Serdica 1987 320 332
[5] Extremal varieties of algebras. II Serdica 1988 20 27
[6] On codimension growth of finitely generated associative algebras Adv. Math. 1998 145 155
,[7] Exponential codimension growth of PI algebras: an exact estimate Adv. Math. 1999 221 243
,[8] The Spechtian nature of 𝑇-ideals whose condimensions have power growth Sibirsk. Mat. Ž. 1978
[9] Ideals of identities of associative algebras 1991
[10] A matrix representation for associative algebras. I, II Trans. Amer. Math. Soc. 1974
[11] Non-commutative affine rings Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 1967 237 255
[12] Existence of identities in 𝐴⊗𝐵 Israel J. Math. 1972 131 152
[13] Codimensions and trace codimensions of matrices are asymptotically equal Israel J. Math. 1984 246 250
Cité par Sources :