Geometry and topology of ℝ-covered foliations
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 31-39.

Voir la notice de l'article provenant de la source American Mathematical Society

An $\mathbb {R}$-covered foliation is a special type of taut foliation on a $3$-manifold: one for which holonomy is defined for all transversals and all time. The universal cover of a manifold $M$ with such a foliation can be partially compactified by a cylinder at infinity, somewhat analogous to the sphere at infinity of a hyperbolic manifold. The action of $\pi _1(M)$ on this cylinder decomposes into a product by elements of $\text {Homeo}(S^1)\times \text {Homeo}(\mathbb {R})$. The action on the $S^1$ factor of this cylinder is rigid under deformations of the foliation through $\mathbb {R}$-covered foliations. Such a foliation admits a pair of transverse genuine laminations whose complementary regions are solid tori with finitely many boundary leaves, which can be blown down to give a transverse regulating pseudo-Anosov flow. These results all fit in an essential way into Thurston’s program to geometrize manifolds admitting taut foliations.
DOI : 10.1090/S1079-6762-00-00077-9

Calegari, Danny 1

1 Department of Mathematics, UC Berkeley, Berkeley, CA 94720
@article{ERAAMS_2000_06_a3,
     author = {Calegari, Danny},
     title = {Geometry and topology of {\ensuremath{\mathbb{R}}-covered} foliations},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {06},
     year = {2000},
     doi = {10.1090/S1079-6762-00-00077-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00077-9/}
}
TY  - JOUR
AU  - Calegari, Danny
TI  - Geometry and topology of ℝ-covered foliations
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2000
SP  - 31
EP  - 39
VL  - 06
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00077-9/
DO  - 10.1090/S1079-6762-00-00077-9
ID  - ERAAMS_2000_06_a3
ER  - 
%0 Journal Article
%A Calegari, Danny
%T Geometry and topology of ℝ-covered foliations
%J Electronic research announcements of the American Mathematical Society
%D 2000
%P 31-39
%V 06
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00077-9/
%R 10.1090/S1079-6762-00-00077-9
%F ERAAMS_2000_06_a3
Calegari, Danny. Geometry and topology of ℝ-covered foliations. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 31-39. doi : 10.1090/S1079-6762-00-00077-9. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00077-9/

[1] Calegari, Danny 𝐑-covered foliations of hyperbolic 3-manifolds Geom. Topol. 1999 137 153

[2] Candel, Alberto Uniformization of surface laminations Ann. Sci. École Norm. Sup. (4) 1993 489 516

[3] Gabai, David, Kazez, William H. Homotopy, isotopy and genuine laminations of 3-manifolds 1997 123 138

[4] Gabai, David, Oertel, Ulrich Essential laminations in 3-manifolds Ann. of Math. (2) 1989 41 73

[5] Garnett, Lucy Foliations, the ergodic theorem and Brownian motion J. Functional Analysis 1983 285 311

[6] Novikov, S. P. The topology of foliations Trudy Moskov. Mat. Obšč. 1965 248 278

[7] Sullivan, Dennis A homological characterization of foliations consisting of minimal surfaces Comment. Math. Helv. 1979 218 223

Cité par Sources :