Mating quadratic maps with Kleinian groups via quasiconformal surgery
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 21-30.

Voir la notice de l'article provenant de la source American Mathematical Society

Let $q:\hat {\mathbb C} \to \hat {\mathbb C}$ be any quadratic polynomial and $r:C_2*C_3 \to PSL(2,{\mathbb C})$ be any faithful discrete representation of the free product of finite cyclic groups $C_2$ and $C_3$ (of orders $2$ and $3$) having connected regular set. We show how the actions of $q$ and $r$ can be combined, using quasiconformal surgery, to construct a $2:2$ holomorphic correspondence $z \to w$, defined by an algebraic relation $p(z,w)=0$.
DOI : 10.1090/S1079-6762-00-00076-7

Bullett, S. 1 ; Harvey, W. 2

1 School of Mathematical Sciences, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, United Kingdom
2 Department of Mathematics, King’s College, University of London, Strand, London WC2R 2LS, United Kingdom
@article{ERAAMS_2000_06_a2,
     author = {Bullett, S. and Harvey, W.},
     title = {Mating quadratic maps with {Kleinian} groups via quasiconformal surgery},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {06},
     year = {2000},
     doi = {10.1090/S1079-6762-00-00076-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00076-7/}
}
TY  - JOUR
AU  - Bullett, S.
AU  - Harvey, W.
TI  - Mating quadratic maps with Kleinian groups via quasiconformal surgery
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2000
SP  - 21
EP  - 30
VL  - 06
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00076-7/
DO  - 10.1090/S1079-6762-00-00076-7
ID  - ERAAMS_2000_06_a2
ER  - 
%0 Journal Article
%A Bullett, S.
%A Harvey, W.
%T Mating quadratic maps with Kleinian groups via quasiconformal surgery
%J Electronic research announcements of the American Mathematical Society
%D 2000
%P 21-30
%V 06
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00076-7/
%R 10.1090/S1079-6762-00-00076-7
%F ERAAMS_2000_06_a2
Bullett, S.; Harvey, W. Mating quadratic maps with Kleinian groups via quasiconformal surgery. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 21-30. doi : 10.1090/S1079-6762-00-00076-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00076-7/

[1] Ahlfors, Lars, Bers, Lipman Riemann’s mapping theorem for variable metrics Ann. of Math. (2) 1960 385 404

[2] Ahlfors, Lars V. Lectures on quasiconformal mappings 1966

[3] Bullett, Shaun, Penrose, Christopher Mating quadratic maps with the modular group Invent. Math. 1994 483 511

[4] Bullett, Shaun, Penrose, Christopher Perturbing circle-packing Kleinian groups as correspondences Nonlinearity 1999 635 672

[5] Ward, Morgan, Dilworth, R. P. The lattice theory of ova Ann. of Math. (2) 1939 600 608

[6] Douady, Adrien, Hubbard, John Hamal Itération des polynômes quadratiques complexes C. R. Acad. Sci. Paris Sér. I Math. 1982 123 126

[7] Douady, Adrien, Hubbard, John Hamal On the dynamics of polynomial-like mappings Ann. Sci. École Norm. Sup. (4) 1985 287 343

[8] Harvey, W. J. Spaces of discrete groups 1977 295 348

[9] Maskit, Bernard On Klein’s combination theorem Trans. Amer. Math. Soc. 1965 499 509

[10] Arf, Cahit Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper J. Reine Angew. Math. 1939 1 44

[11] Tan, Lei Matings of quadratic polynomials Ergodic Theory Dynam. Systems 1992 589 620

Cité par Sources :