Family algebras
Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 7-20.

Voir la notice de l'article provenant de la source American Mathematical Society

A new class of associative algebras is introduced and studied. These algebras are related to simple complex Lie algebras (or root systems). Roughly speaking, they are finite dimensional approximations to the enveloping algebra $U(\mathfrak {g})$ viewed as a module over its center. It seems that several important questions on semisimple algebras and their representations can be formulated, studied and sometimes solved in terms of our algebras. Here we only start this program and hope that it will be continued and developed.
DOI : 10.1090/S1079-6762-00-00075-5

Kirillov, A. 1

1 Department of Mathematics, The University of Pennsylvania, Philadelphia, PA 19104
@article{ERAAMS_2000_06_a1,
     author = {Kirillov, A.},
     title = {Family algebras},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {06},
     year = {2000},
     doi = {10.1090/S1079-6762-00-00075-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00075-5/}
}
TY  - JOUR
AU  - Kirillov, A.
TI  - Family algebras
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2000
SP  - 7
EP  - 20
VL  - 06
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00075-5/
DO  - 10.1090/S1079-6762-00-00075-5
ID  - ERAAMS_2000_06_a1
ER  - 
%0 Journal Article
%A Kirillov, A.
%T Family algebras
%J Electronic research announcements of the American Mathematical Society
%D 2000
%P 7-20
%V 06
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00075-5/
%R 10.1090/S1079-6762-00-00075-5
%F ERAAMS_2000_06_a1
Kirillov, A. Family algebras. Electronic research announcements of the American Mathematical Society, Tome 06 (2000), pp. 7-20. doi : 10.1090/S1079-6762-00-00075-5. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-00-00075-5/

[1] Humphreys, James E. Introduction to Lie algebras and representation theory 1972

[2] Kostant, Bertram Lie group representations on polynomial rings Amer. J. Math. 1963 327 404

[3] Vinberg, È. B., Onishchik, A. L. Seminar po gruppam Li i algebraicheskim gruppam 1988 344

Cité par Sources :