Rigidity of critical circle mappings II
Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 343-370

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that any two real-analytic critical circle maps with cubic critical point and the same irrational rotation number of bounded type are $C^{1+\alpha }$ conjugate for some $\alpha >0$.
DOI : 10.1090/S0894-0347-99-00324-0

de Faria, Edson 1 ; de Melo, Welington 2

1 Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP05508-900 São Paulo SP - Brasil
2 Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico, CEP22460-320 Rio de Janeiro RJ - Brasil
@article{10_1090_S0894_0347_99_00324_0,
     author = {de Faria, Edson and de Melo, Welington},
     title = {Rigidity of critical circle mappings {II}},
     journal = {Journal of the American Mathematical Society},
     pages = {343--370},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2000},
     doi = {10.1090/S0894-0347-99-00324-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00324-0/}
}
TY  - JOUR
AU  - de Faria, Edson
AU  - de Melo, Welington
TI  - Rigidity of critical circle mappings II
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 343
EP  - 370
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00324-0/
DO  - 10.1090/S0894-0347-99-00324-0
ID  - 10_1090_S0894_0347_99_00324_0
ER  - 
%0 Journal Article
%A de Faria, Edson
%A de Melo, Welington
%T Rigidity of critical circle mappings II
%J Journal of the American Mathematical Society
%D 2000
%P 343-370
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00324-0/
%R 10.1090/S0894-0347-99-00324-0
%F 10_1090_S0894_0347_99_00324_0
de Faria, Edson; de Melo, Welington. Rigidity of critical circle mappings II. Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 343-370. doi: 10.1090/S0894-0347-99-00324-0

[1] Ahlfors, Lars V. Conformal invariants: topics in geometric function theory 1973

[2] Graczyk, Jacek, ŚWiaì§Tek, Grzegorz Critical circle maps near bifurcation Comm. Math. Phys. 1996 227 260

[3] Herman, Michael-Robert Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations Inst. Hautes Études Sci. Publ. Math. 1979 5 233

[4] Keen, Linda Dynamics of holomorphic self-maps of 𝐶* 1988 9 30

[5] Lyubich, M., Yampolsky, M. Dynamics of quadratic polynomials: complex bounds for real maps Ann. Inst. Fourier (Grenoble) 1997 1219 1255

[6] Mcmullen, Curtis T. Complex dynamics and renormalization 1994

[7] Mcmullen, Curtis T. Renormalization and 3-manifolds which fiber over the circle 1996

[8] Mcmullen, Curtis T. Self-similarity of Siegel disks and Hausdorff dimension of Julia sets Acta Math. 1998 247 292

[9] De Melo, Welington, Van Strien, Sebastian One-dimensional dynamics 1993

[10] Sullivan, Dennis Bounds, quadratic differentials, and renormalization conjectures 1992 417 466

[11] ŚWiä…Tek, Grzegorz Rational rotation numbers for maps of the circle Comm. Math. Phys. 1988 109 128

Cité par Sources :