Real rational curves in Grassmannians
Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 333-341

Voir la notice de l'article provenant de la source American Mathematical Society

Fulton asked how many solutions to a problem of enumerative geometry can be real, when that problem is one of counting geometric figures of some kind having specified position with respect to some given general figures. For the problem of plane conics tangent to five general (real) conics, the surprising answer is that all 3264 may be real. Similarly, given any problem of enumerating $p$-planes incident on some given general subspaces, there are general real subspaces such that each of the (finitely many) incident $p$-planes is real. We show that the problem of enumerating parameterized rational curves in a Grassmannian satisfying simple (codimension 1) conditions may have all of its solutions real.
DOI : 10.1090/S0894-0347-99-00323-9

Sottile, Frank 1, 2

1 Department of Mathematics, University of Wisconsin, Van Vleck Hall, 480 Lincoln Drive, Madison, Wisconsin 53706-1388
2 Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003-4515
@article{10_1090_S0894_0347_99_00323_9,
     author = {Sottile, Frank},
     title = {Real rational curves in {Grassmannians}},
     journal = {Journal of the American Mathematical Society},
     pages = {333--341},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2000},
     doi = {10.1090/S0894-0347-99-00323-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00323-9/}
}
TY  - JOUR
AU  - Sottile, Frank
TI  - Real rational curves in Grassmannians
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 333
EP  - 341
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00323-9/
DO  - 10.1090/S0894-0347-99-00323-9
ID  - 10_1090_S0894_0347_99_00323_9
ER  - 
%0 Journal Article
%A Sottile, Frank
%T Real rational curves in Grassmannians
%J Journal of the American Mathematical Society
%D 2000
%P 333-341
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00323-9/
%R 10.1090/S0894-0347-99-00323-9
%F 10_1090_S0894_0347_99_00323_9
Sottile, Frank. Real rational curves in Grassmannians. Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 333-341. doi: 10.1090/S0894-0347-99-00323-9

[1] Bertram, Aaron Quantum Schubert calculus Adv. Math. 1997 289 305

[2] Bertram, Aaron, Daskalopoulos, Georgios, Wentworth, Richard Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians J. Amer. Math. Soc. 1996 529 571

[3] Byrnes, C. I. Pole assignment by output feedback 1989 31 78

[4] Fulton, William Introduction to intersection theory in algebraic geometry 1984

[5] Intriligator, Kenneth Fusion residues Modern Phys. Lett. A 1991 3543 3556

[6] Kleiman, Steven L. The transversality of a general translate Compositio Math. 1974 287 297

[7] Ravi, M. S., Rosenthal, J. A smooth compactification of the space of transfer functions with fixed McMillan degree Acta Appl. Math. 1994 329 352

[8] Ravi, M. S., Rosenthal, Joachim, Wang, Xiaochang Dynamic pole assignment and Schubert calculus SIAM J. Control Optim. 1996 813 832

[9] Ronga, Felice, Tognoli, Alberto, Vust, Thierry The number of conics tangent to five given conics: the real case Rev. Mat. Univ. Complut. Madrid 1997 391 421

[10] Rosenthal, Joachim On dynamic feedback compensation and compactification of systems SIAM J. Control Optim. 1994 279 296

[11] Strã¸Mme, Stein Arild On parametrized rational curves in Grassmann varieties 1987 251 272

[12] Vafa, Cumrun Topological mirrors and quantum rings 1992 96 119

Cité par Sources :