Principe local-global pour les zéro-cycles sur les surfaces réglées
Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 101-124

Voir la notice de l'article provenant de la source American Mathematical Society

Let $k$ be a number field, $C/k$ a smooth projective curve, and $X$ a smooth projective surface which is a conic bundle over $C$. Let $CH_0(X/C)$ be the relative Chow group, which is the kernel of the projection map $CH_0(X) \rightarrow CH_0(C)$ on Chow groups of zero-cycles. For each place $v$ of $k$, one may consider the relative Chow group $CH_0(X_v/C_v)=CH_0(X\times _kk_v/C\times _kk_v)$. Under minor assumptions, we identify the diagonal image of $CH_0(X/C)$ in the product of all $CH_0(X_v/C_v)$ as the kernel of the natural pairing with the Brauer group of $X$. When $C$ is an elliptic curve with finite Tate-Shafarevich group, under minor assumptions, we show that the Brauer-Manin obstruction to the existence of a zero-cycle of degree one on $X$ is the only obstruction.
DOI : 10.1090/S0894-0347-99-00318-5

Colliot-Thélène, Jean-Louis 1

1 C.N.R.S., UMR 8628, Mathématiques, Bâtiment 425, Université de Paris-Sud, F–91405 Orsay, France
@article{10_1090_S0894_0347_99_00318_5,
     author = {Colliot-Th\~A{\textcopyright}l\~A{\textasciidieresis}ne, Jean-Louis},
     title = {Principe local-global pour les {z\~A{\textcopyright}ro-cycles} sur les surfaces {r\~A{\textcopyright}gl\~A{\textcopyright}es}},
     journal = {Journal of the American Mathematical Society},
     pages = {101--124},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2000},
     doi = {10.1090/S0894-0347-99-00318-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00318-5/}
}
TY  - JOUR
AU  - Colliot-Thélène, Jean-Louis
TI  - Principe local-global pour les zéro-cycles sur les surfaces réglées
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 101
EP  - 124
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00318-5/
DO  - 10.1090/S0894-0347-99-00318-5
ID  - 10_1090_S0894_0347_99_00318_5
ER  - 
%0 Journal Article
%A Colliot-Thélène, Jean-Louis
%T Principe local-global pour les zéro-cycles sur les surfaces réglées
%J Journal of the American Mathematical Society
%D 2000
%P 101-124
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00318-5/
%R 10.1090/S0894-0347-99-00318-5
%F 10_1090_S0894_0347_99_00318_5
Colliot-Thélène, Jean-Louis. Principe local-global pour les zéro-cycles sur les surfaces réglées. Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 101-124. doi: 10.1090/S0894-0347-99-00318-5

[1] Arason, Jã³N Kr. Cohomologische invarianten quadratischer Formen J. Algebra 1975 448 491

[2] Cassels, J. W. S. Arithmetic on curves of genus 1. VII. The dual exact sequence J. Reine Angew. Math. 1964 150 158

[3] Colliot-Thã©Lã¨Ne, Jean-Louis L’arithmétique du groupe de Chow des zéro-cycles J. Théor. Nombres Bordeaux 1995 51 73

[4] Colliot-Thã©Lã¨Ne, Jean-Louis, Jannsen, Uwe Sommes de carrés dans les corps de fonctions C. R. Acad. Sci. Paris Sér. I Math. 1991 759 762

[5] Colliot-Thã©Lã¨Ne, Jean-Louis, Sansuc, Jean-Jacques La 𝑅-équivalence sur les tores Ann. Sci. École Norm. Sup. (4) 1977 175 229

[6] Colliot-Thã©Lã¨Ne, Jean-Louis, Sansuc, Jean-Jacques On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch Duke Math. J. 1981 421 447

[7] Colliot-Thã©Lã¨Ne, Jean-Louis, Sansuc, Jean-Jacques La descente sur les variétés rationnelles. II Duke Math. J. 1987 375 492

[8] Colliot-Thã©Lã¨Ne, Jean-Louis, Skorobogatov, Alexei N. Groupe de Chow des zéro-cycles sur les fibrés en quadriques 𝐾-Theory 1993 477 500

[9] Colliot-Thã©Lã¨Ne, J.-L., Skorobogatov, A. N., Swinnerton-Dyer, Peter Rational points and zero-cycles on fibred varieties: Schinzel’s hypothesis and Salberger’s device J. Reine Angew. Math. 1998 1 28

[10] Colliot-Thã©Lã¨Ne, Jean-Louis, Swinnerton-Dyer, Peter Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties J. Reine Angew. Math. 1994 49 112

[11] Frossard, Emmanuelle Groupe de Chow de dimension zéro des fibrations en variétés de Severi-Brauer Compositio Math. 1998 187 213

[12] Gros, Michel 0-cycles de degré 0 sur les surfaces fibrées en coniques J. Reine Angew. Math. 1987 166 184

[13] Kato, Kazuya A Hasse principle for two-dimensional global fields J. Reine Angew. Math. 1986 142 183

[14] Kleiman, Steven L., Altman, Allen B. Bertini theorems for hypersurface sections containing a subscheme Comm. Algebra 1979 775 790

[15] Manin, Y. I. Le groupe de Brauer-Grothendieck en géométrie diophantienne 1971 401 411

[16] Merkur′Ev, A. S., Suslin, A. A. 𝐾-cohomology of Severi-Brauer varieties and the norm residue homomorphism Izv. Akad. Nauk SSSR Ser. Mat. 1982

[17] Milne, J. S. Arithmetic duality theorems 1986

[18] Parimala, R., Suresh, V. Erratum: “Zero-cycles on quadric fibrations: finiteness theorems and the cycle map” [Invent. Math. 122 (1995), no. 1, 83–117 Invent. Math. 1996 611

[19] Saito, S. Some observations on motivic cohomology of arithmetic schemes Invent. Math. 1989 371 404

[20] Salberger, P. Zero-cycles on rational surfaces over number fields Invent. Math. 1988 505 524

[21] Sansuc, Jean-Jacques Descente et principe de Hasse pour certaines variétés rationnelles 1982 253 271

[22] Serre, Jean-Pierre Lie algebras and Lie groups 1992

Cité par Sources :