Compact subsets of the first Baire class
Journal of the American Mathematical Society, Tome 12 (1999) no. 4, pp. 1179-1212 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

In this paper we present results about the structure of compact subsets of the first Baire class. For example, we give a complete description of characters of points in such compacta as well as a complete list of ‘critical’ members of this class of compacta. Moreover, we describe the close relationship between this class of compacta and the class of compact metric spaces.
DOI : 10.1090/S0894-0347-99-00312-4

Todorčević, Stevo  1

1 Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
@article{10_1090_S0894_0347_99_00312_4,
     author = {Todor\v{c}evi\'c, Stevo},
     title = {Compact subsets of the first {Baire} class},
     journal = {Journal of the American Mathematical Society},
     pages = {1179--1212},
     year = {1999},
     volume = {12},
     number = {4},
     doi = {10.1090/S0894-0347-99-00312-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00312-4/}
}
TY  - JOUR
AU  - Todorčević, Stevo
TI  - Compact subsets of the first Baire class
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 1179
EP  - 1212
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00312-4/
DO  - 10.1090/S0894-0347-99-00312-4
ID  - 10_1090_S0894_0347_99_00312_4
ER  - 
%0 Journal Article
%A Todorčević, Stevo
%T Compact subsets of the first Baire class
%J Journal of the American Mathematical Society
%D 1999
%P 1179-1212
%V 12
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00312-4/
%R 10.1090/S0894-0347-99-00312-4
%F 10_1090_S0894_0347_99_00312_4
Todorčević, Stevo. Compact subsets of the first Baire class. Journal of the American Mathematical Society, Tome 12 (1999) no. 4, pp. 1179-1212. doi: 10.1090/S0894-0347-99-00312-4

[1] Argyros, S., Mercourakis, S. On weakly Lindelöf Banach spaces Rocky Mountain J. Math. 1993 395 446

[2] Blass, Andreas A partition theorem for perfect sets Proc. Amer. Math. Soc. 1981 271 277

[3] Bourgain, J. Some remarks on compact sets of first Baire class Bull. Soc. Math. Belg. 1978 3 10

[4] Bourgain, J., Fremlin, D. H., Talagrand, M. Pointwise compact sets of Baire-measurable functions Amer. J. Math. 1978 845 886

[5] Debs, Gabriel Effective properties in compact sets of Borel functions Mathematika 1987 64 68

[6] Fremlin, D. H. Consequences of Martin’s axiom 1984

[7] Fremlin, D. H. On compact spaces carrying Radon measures of uncountable Maharam type Fund. Math. 1997 295 304

[8] Godefroy, Gilles Compacts de Rosenthal Pacific J. Math. 1980 293 306

[9] Godefroy, Gilles, Louveau, Alain Axioms of determinacy and biorthogonal systems Israel J. Math. 1989 109 116

[10] Godefroy, Gilles, Talagrand, Michel Espaces de Banach représentables Israel J. Math. 1982 321 330

[11] Open problems in topology 1990

[12] James, Robert C. A separable somewhat reflexive Banach space with nonseparable dual Bull. Amer. Math. Soc. 1974 738 743

[13] Kechris, Alexander S. Classical descriptive set theory 1995

[14] Krawczyk, Adam On the Rosenthal compacta and analytic sets Proc. Amer. Math. Soc. 1992 1095 1100

[15] Lindenstrauss, J., Stegall, C. Examples of separable spaces which do not contain ℓ₁ and whose duals are non-separable Studia Math. 1975 81 105

[16] Lindenstrauss, Joram, Tzafriri, Lior Classical Banach spaces. I 1977

[17] Louveau, A., Shelah, S., Veličković, B. Borel partitions of infinite subtrees of a perfect tree Ann. Pure Appl. Logic 1993 271 281

[18] Łojasiewicz, Stanisław An introduction to the theory of real functions 1988

[19] Marciszewski, Witold On a classification of pointwise compact sets of the first Baire class functions Fund. Math. 1989 195 209

[20] Marciszewski, Witold On properties of Rosenthal compacta Proc. Amer. Math. Soc. 1992 797 805

[21] Recent progress in general topology 1992

[22] Miller, Arnold W. Infinite combinatorics and definability Ann. Pure Appl. Logic 1989 179 203

[23] Namioka, I. Separate continuity and joint continuity Pacific J. Math. 1974 515 531

[24] Odell, E., Rosenthal, H. P. A double-dual characterization of separable Banach spaces containing 𝑙¹ Israel J. Math. 1975 375 384

[25] Pawlikowski, Janusz Parametrized Ellentuck theorem Topology Appl. 1990 65 73

[26] Pol, Roman Note on the spaces 𝑃(𝑆) of regular probability measures whose topology is determined by countable subsets Pacific J. Math. 1982 185 201

[27] Pol, Roman Note on pointwise convergence of sequences of analytic sets Mathematika 1989

[28] Rosenthal, Haskell P. A characterization of Banach spaces containing 𝑙¹ Proc. Nat. Acad. Sci. U.S.A. 1974 2411 2413

[29] Rosenthal, Haskell P. Point-wise compact subsets of the first Baire class Amer. J. Math. 1977 362 378

[30] Rosenthal, Haskell P. Some recent discoveries in the isomorphic theory of Banach spaces Bull. Amer. Math. Soc. 1978 803 831

[31] Dickson, Leonard Eugene New First Course in the Theory of Equations 1939

[32] Scott, Dana A proof of the independence of the continuum hypothesis Math. Systems Theory 1967 89 111

[33] Stegall, Charles The Radon-Nikodym property in conjugate Banach spaces Trans. Amer. Math. Soc. 1975 213 223

[34] Stern, Jacques A Ramsey theorem for trees, with an application to Banach spaces Israel J. Math. 1978 179 188

[35] Szlenk, W. The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces Studia Math. 1968 53 61

[36] Talagrand, Michel Pettis integral and measure theory Mem. Amer. Math. Soc. 1984

[37] Todorčević, Stevo Partition problems in topology 1989

[38] Todorčević, Stevo Free sequences Topology Appl. 1990 235 238

[39] Todorčević, Stevo Analytic gaps Fund. Math. 1996 55 66

[40] White, H. E., Jr. Variants of Blumberg’s theorem Illinois J. Math. 1982 359 373

Cité par Sources :