Computing roadmaps of semi-algebraic sets on a variety
Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 55-82

Voir la notice de l'article provenant de la source American Mathematical Society

We consider a semi-algebraic set $S$ defined by $s$ polynomials in $k$ variables which is contained in an algebraic variety $Z(Q)$. The variety is assumed to have real dimension $k’,$ the polynomial $Q$ and the polynomials defining $S$ have degree at most $d$. We present an algorithm which constructs a roadmap on $S$. The complexity of this algorithm is $s^{k’+1}d^{O(k^2)}$. We also present an algorithm which, given a point of $S$ defined by polynomials of degree at most $\tau$, constructs a path joining this point to the roadmap. The complexity of this algorithm is $k’ s \tau ^{O(1)} d^{O(k^2)}.$ These algorithms easily yield an algorithm which, given two points of $S$ defined by polynomials of degree at most $\tau$, decides whether or not these two points of $S$ lie in the same semi-algebraically connected component of $S$ and if they do computes a semi-algebraic path in $S$ connecting the two points.
DOI : 10.1090/S0894-0347-99-00311-2

Basu, Saugata 1 ; Pollack, Richard 2 ; Roy, Marie-Françoise 3

1 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
2 Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
3 IRMAR (URA CNRS 305), Université de Rennes, Campus de Beaulieu 35042 Rennes cedex, France
@article{10_1090_S0894_0347_99_00311_2,
     author = {Basu, Saugata and Pollack, Richard and Roy, Marie-Fran\~A{\textsection}oise},
     title = {Computing roadmaps of semi-algebraic sets on a variety},
     journal = {Journal of the American Mathematical Society},
     pages = {55--82},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2000},
     doi = {10.1090/S0894-0347-99-00311-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00311-2/}
}
TY  - JOUR
AU  - Basu, Saugata
AU  - Pollack, Richard
AU  - Roy, Marie-Françoise
TI  - Computing roadmaps of semi-algebraic sets on a variety
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 55
EP  - 82
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00311-2/
DO  - 10.1090/S0894-0347-99-00311-2
ID  - 10_1090_S0894_0347_99_00311_2
ER  - 
%0 Journal Article
%A Basu, Saugata
%A Pollack, Richard
%A Roy, Marie-Françoise
%T Computing roadmaps of semi-algebraic sets on a variety
%J Journal of the American Mathematical Society
%D 2000
%P 55-82
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00311-2/
%R 10.1090/S0894-0347-99-00311-2
%F 10_1090_S0894_0347_99_00311_2
Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise. Computing roadmaps of semi-algebraic sets on a variety. Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 55-82. doi: 10.1090/S0894-0347-99-00311-2

[1] Basu, Saugata, Pollack, Richard, Roy, Marie-Franã§Oise On the combinatorial and algebraic complexity of quantifier elimination J. ACM 1996 1002 1045

[2] Basu, Saugata, Pollack, Richard, Roy, Marie-Franã§Oise On computing a set of points meeting every cell defined by a family of polynomials on a variety J. Complexity 1997 28 37

[3] Canny, John The complexity of robot motion planning 1988

[4] Canny, John Computing roadmaps of general semi-algebraic sets Comput. J. 1993 504 514

[5] Canny, J., Grigor′Ev, D. Yu., Vorobjov, N. N., Jr. Finding connected components of a semialgebraic set in subexponential time Appl. Algebra Engrg. Comm. Comput. 1992 217 238

[6] Collins, George E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition 1975 134 183

[7] Coste, M., Roy, M.-F. Thom’s lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets J. Symbolic Comput. 1988 121 129

[8] Coste, Michel, Shiota, Masahiro Nash triviality in families of Nash manifolds Invent. Math. 1992 349 368

[9] Grigor′Ev, D. Yu., Vorobjov, N. N., Jr. Counting connected components of a semialgebraic set in subexponential time Comput. Complexity 1992 133 186

[10] Gournay, L., Risler, J.-J. Construction of roadmaps in semi-algebraic sets Appl. Algebra Engrg. Comm. Comput. 1993 239 252

[11] Hardt, Robert M. Semi-algebraic local-triviality in semi-algebraic mappings Amer. J. Math. 1980 291 302

[12] Heintz, Joos, Roy, Marie-Franã§Oise, Solernã³, Pablo Single exponential path finding in semialgebraic sets. I. The case of a regular bounded hypersurface 1991 180 196

[13] Heintz, Joos, Roy, Marie-Franã§Oise, Solernã³, Pablo Single exponential path finding in semi-algebraic sets. II. The general case 1994 449 465

[14] Milnor, J. Morse theory 1963

[15] Renegar, James On the computational complexity and geometry of the first-order theory of the reals. I. Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals J. Symbolic Comput. 1992 255 299

[16] Roy, Marie-Franã§Oise, Vorobjov, Nicolai Finding irreducible components of some real transcendental varieties Comput. Complexity 1994 107 132

[17] Schwartz, Jacob T., Sharir, Micha On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds Adv. in Appl. Math. 1983 298 351

Cité par Sources :