Voir la notice de l'article provenant de la source American Mathematical Society
Basu, Saugata 1 ; Pollack, Richard 2 ; Roy, Marie-Françoise 3
@article{10_1090_S0894_0347_99_00311_2,
     author = {Basu, Saugata and Pollack, Richard and Roy, Marie-Fran\~A{\textsection}oise},
     title = {Computing roadmaps of semi-algebraic sets on a variety},
     journal = {Journal of the American Mathematical Society},
     pages = {55--82},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2000},
     doi = {10.1090/S0894-0347-99-00311-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00311-2/}
}
                      
                      
                    TY - JOUR AU - Basu, Saugata AU - Pollack, Richard AU - Roy, Marie-Françoise TI - Computing roadmaps of semi-algebraic sets on a variety JO - Journal of the American Mathematical Society PY - 2000 SP - 55 EP - 82 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00311-2/ DO - 10.1090/S0894-0347-99-00311-2 ID - 10_1090_S0894_0347_99_00311_2 ER -
%0 Journal Article %A Basu, Saugata %A Pollack, Richard %A Roy, Marie-Françoise %T Computing roadmaps of semi-algebraic sets on a variety %J Journal of the American Mathematical Society %D 2000 %P 55-82 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00311-2/ %R 10.1090/S0894-0347-99-00311-2 %F 10_1090_S0894_0347_99_00311_2
Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise. Computing roadmaps of semi-algebraic sets on a variety. Journal of the American Mathematical Society, Tome 13 (2000) no. 1, pp. 55-82. doi: 10.1090/S0894-0347-99-00311-2
[1] , , On the combinatorial and algebraic complexity of quantifier elimination J. ACM 1996 1002 1045
[2] , , On computing a set of points meeting every cell defined by a family of polynomials on a variety J. Complexity 1997 28 37
[3] The complexity of robot motion planning 1988
[4] Computing roadmaps of general semi-algebraic sets Comput. J. 1993 504 514
[5] , , Finding connected components of a semialgebraic set in subexponential time Appl. Algebra Engrg. Comm. Comput. 1992 217 238
[6] Quantifier elimination for real closed fields by cylindrical algebraic decomposition 1975 134 183
[7] , Thomâs lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets J. Symbolic Comput. 1988 121 129
[8] , Nash triviality in families of Nash manifolds Invent. Math. 1992 349 368
[9] , Counting connected components of a semialgebraic set in subexponential time Comput. Complexity 1992 133 186
[10] , Construction of roadmaps in semi-algebraic sets Appl. Algebra Engrg. Comm. Comput. 1993 239 252
[11] Semi-algebraic local-triviality in semi-algebraic mappings Amer. J. Math. 1980 291 302
[12] , , Single exponential path finding in semialgebraic sets. I. The case of a regular bounded hypersurface 1991 180 196
[13] , , Single exponential path finding in semi-algebraic sets. II. The general case 1994 449 465
[14] Morse theory 1963
[15] On the computational complexity and geometry of the first-order theory of the reals. I. Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals J. Symbolic Comput. 1992 255 299
[16] , Finding irreducible components of some real transcendental varieties Comput. Complexity 1994 107 132
[17] , On the âpiano moversâ problem. II. General techniques for computing topological properties of real algebraic manifolds Adv. in Appl. Math. 1983 298 351
Cité par Sources :
