Multidimensional van der Corput and sublevel set estimates
Journal of the American Mathematical Society, Tome 12 (1999) no. 4, pp. 981-1015 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Van der Corput’s lemma gives an upper bound for one-dimensional oscillatory integrals that depends only on a lower bound for some derivative of the phase, not on any upper bound of any sort. We establish generalizations to higher dimensions, in which the only hypothesis is that a partial derivative of the phase is assumed bounded below by a positive constant. Analogous upper bounds for measures of sublevel sets are also obtained. The analysis, particularly for the sublevel set estimates, has a more combinatorial flavour than in the one-dimensional case.
DOI : 10.1090/S0894-0347-99-00309-4

Carbery, Anthony  1   ; Christ, Michael  2   ; Wright, James  3

1 Department of Mathematics & Statistics, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, Scotland, United Kingdom
2 Department of Mathematics, University of California, Berkeley, California 94720-3840
3 Department of Mathematics, University of New South Wales, 2052 Sydney, New South Wales, Australia
@article{10_1090_S0894_0347_99_00309_4,
     author = {Carbery, Anthony and Christ, Michael and Wright, James},
     title = {Multidimensional van der {Corput} and sublevel set estimates},
     journal = {Journal of the American Mathematical Society},
     pages = {981--1015},
     year = {1999},
     volume = {12},
     number = {4},
     doi = {10.1090/S0894-0347-99-00309-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00309-4/}
}
TY  - JOUR
AU  - Carbery, Anthony
AU  - Christ, Michael
AU  - Wright, James
TI  - Multidimensional van der Corput and sublevel set estimates
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 981
EP  - 1015
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00309-4/
DO  - 10.1090/S0894-0347-99-00309-4
ID  - 10_1090_S0894_0347_99_00309_4
ER  - 
%0 Journal Article
%A Carbery, Anthony
%A Christ, Michael
%A Wright, James
%T Multidimensional van der Corput and sublevel set estimates
%J Journal of the American Mathematical Society
%D 1999
%P 981-1015
%V 12
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00309-4/
%R 10.1090/S0894-0347-99-00309-4
%F 10_1090_S0894_0347_99_00309_4
Carbery, Anthony; Christ, Michael; Wright, James. Multidimensional van der Corput and sublevel set estimates. Journal of the American Mathematical Society, Tome 12 (1999) no. 4, pp. 981-1015. doi: 10.1090/S0894-0347-99-00309-4

[1] Arhipov, G. I., Karacuba, A. A., Čubarikov, V. N. Trigonometric integrals Izv. Akad. Nauk SSSR Ser. Mat. 1979

[2] Carbery, Anthony, Wainger, Stephen, Wright, James Hilbert transforms and maximal functions associated to flat curves on the Heisenberg group J. Amer. Math. Soc. 1995 141 179

[3] Christ, Michael Failure of an endpoint estimate for integrals along curves 1995 163 168

[4] Christ, Michael Hilbert transforms along curves. I. Nilpotent groups Ann. of Math. (2) 1985 575 596

[5] Erdős, P. On extremal problems of graphs and generalized graphs Israel J. Math. 1964 183 190

[6] Falconer, K. J. The geometry of fractal sets 1986

[7] Hörmander, Lars Oscillatory integrals and multipliers on 𝐹𝐿^{𝑝} Ark. Mat. 1973 1 11

[8] Isaacson, Eugene, Keller, Herbert Bishop Analysis of numerical methods 1966

[9] Jurkat, W. B., Sampson, G. The complete solution to the (𝐿^{𝑝},𝐿^{𝑞}) mapping problem for a class of oscillating kernels Indiana Univ. Math. J. 1981 403 413

[10] Pan, Yibiao Uniform estimates for oscillatory integral operators J. Funct. Anal. 1991 207 220

[11] Phong, D. H., Stein, E. M. On a stopping process for oscillatory integrals J. Geom. Anal. 1994 105 120

[12] Phong, D. H., Stein, E. M. The Newton polyhedron and oscillatory integral operators Acta Math. 1997 105 152

[13] Ricci, Fulvio, Stein, E. M. Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals J. Funct. Anal. 1987 179 194

[14] Rudin, Walter Real and complex analysis 1966

[15] Seeger, Andreas 𝐿²-estimates for a class of singular oscillatory integrals Math. Res. Lett. 1994 65 73

[16] Seeger, Andreas Radon transforms and finite type conditions J. Amer. Math. Soc. 1998 869 897

[17] Sjölin, Per Convolution with oscillating kernels Indiana Univ. Math. J. 1981 47 55

[18] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993

Cité par Sources :