Carbery, Anthony  1 ; Christ, Michael  2 ; Wright, James  3
@article{10_1090_S0894_0347_99_00309_4,
author = {Carbery, Anthony and Christ, Michael and Wright, James},
title = {Multidimensional van der {Corput} and sublevel set estimates},
journal = {Journal of the American Mathematical Society},
pages = {981--1015},
year = {1999},
volume = {12},
number = {4},
doi = {10.1090/S0894-0347-99-00309-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00309-4/}
}
TY - JOUR AU - Carbery, Anthony AU - Christ, Michael AU - Wright, James TI - Multidimensional van der Corput and sublevel set estimates JO - Journal of the American Mathematical Society PY - 1999 SP - 981 EP - 1015 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00309-4/ DO - 10.1090/S0894-0347-99-00309-4 ID - 10_1090_S0894_0347_99_00309_4 ER -
%0 Journal Article %A Carbery, Anthony %A Christ, Michael %A Wright, James %T Multidimensional van der Corput and sublevel set estimates %J Journal of the American Mathematical Society %D 1999 %P 981-1015 %V 12 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00309-4/ %R 10.1090/S0894-0347-99-00309-4 %F 10_1090_S0894_0347_99_00309_4
Carbery, Anthony; Christ, Michael; Wright, James. Multidimensional van der Corput and sublevel set estimates. Journal of the American Mathematical Society, Tome 12 (1999) no. 4, pp. 981-1015. doi: 10.1090/S0894-0347-99-00309-4
[1] , , Trigonometric integrals Izv. Akad. Nauk SSSR Ser. Mat. 1979
[2] , , Hilbert transforms and maximal functions associated to flat curves on the Heisenberg group J. Amer. Math. Soc. 1995 141 179
[3] Failure of an endpoint estimate for integrals along curves 1995 163 168
[4] Hilbert transforms along curves. I. Nilpotent groups Ann. of Math. (2) 1985 575 596
[5] On extremal problems of graphs and generalized graphs Israel J. Math. 1964 183 190
[6] The geometry of fractal sets 1986
[7] Oscillatory integrals and multipliers on 𝐹𝐿^{𝑝} Ark. Mat. 1973 1 11
[8] , Analysis of numerical methods 1966
[9] , The complete solution to the (𝐿^{𝑝},𝐿^{𝑞}) mapping problem for a class of oscillating kernels Indiana Univ. Math. J. 1981 403 413
[10] Uniform estimates for oscillatory integral operators J. Funct. Anal. 1991 207 220
[11] , On a stopping process for oscillatory integrals J. Geom. Anal. 1994 105 120
[12] , The Newton polyhedron and oscillatory integral operators Acta Math. 1997 105 152
[13] , Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals J. Funct. Anal. 1987 179 194
[14] Real and complex analysis 1966
[15] 𝐿²-estimates for a class of singular oscillatory integrals Math. Res. Lett. 1994 65 73
[16] Radon transforms and finite type conditions J. Amer. Math. Soc. 1998 869 897
[17] Convolution with oscillating kernels Indiana Univ. Math. J. 1981 47 55
[18] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993
Cité par Sources :