Fractional isoperimetric inequalities and subgroup distortion
Journal of the American Mathematical Society, Tome 12 (1999) no. 4, pp. 1103-1118 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

It is shown that there exist infinitely many non-integers $r>2$ such that the Dehn function of some finitely presented group is $\simeq n^r$. Explicit examples of such groups are constructed. For each rational number $s\ge 1$ pairs of finitely presented groups $H\subset G$ are constructed so that the distortion of $H$ in $G$ is $\simeq n^s$.
DOI : 10.1090/S0894-0347-99-00308-2

Bridson, Martin  1

1 Mathematical Institute, 24–29 St. Giles’, Oxford OX1 3LB, Great Britain
@article{10_1090_S0894_0347_99_00308_2,
     author = {Bridson, Martin},
     title = {Fractional isoperimetric inequalities and subgroup distortion},
     journal = {Journal of the American Mathematical Society},
     pages = {1103--1118},
     year = {1999},
     volume = {12},
     number = {4},
     doi = {10.1090/S0894-0347-99-00308-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00308-2/}
}
TY  - JOUR
AU  - Bridson, Martin
TI  - Fractional isoperimetric inequalities and subgroup distortion
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 1103
EP  - 1118
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00308-2/
DO  - 10.1090/S0894-0347-99-00308-2
ID  - 10_1090_S0894_0347_99_00308_2
ER  - 
%0 Journal Article
%A Bridson, Martin
%T Fractional isoperimetric inequalities and subgroup distortion
%J Journal of the American Mathematical Society
%D 1999
%P 1103-1118
%V 12
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00308-2/
%R 10.1090/S0894-0347-99-00308-2
%F 10_1090_S0894_0347_99_00308_2
Bridson, Martin. Fractional isoperimetric inequalities and subgroup distortion. Journal of the American Mathematical Society, Tome 12 (1999) no. 4, pp. 1103-1118. doi: 10.1090/S0894-0347-99-00308-2

[1] Alonso, Juan M. Inégalités isopérimétriques et quasi-isométries C. R. Acad. Sci. Paris Sér. I Math. 1990 761 764

[2] Bridson, Martin R. On the geometry of normal forms in discrete groups Proc. London Math. Soc. (3) 1993 596 616

[3] Bridson, M. R. Combings of semidirect products and 3-manifold groups Geom. Funct. Anal. 1993 263 278

[4] Bridson, Martin R. Optimal isoperimetric inequalities for abelian-by-free groups Topology 1995 547 564

[5] Bridson, M. R., Gersten, S. M. The optimal isoperimetric inequality for torus bundles over the circle Quart. J. Math. Oxford Ser. (2) 1996 1 23

[6] Baumslag, G., Miller, C. F., Iii, Short, H. Isoperimetric inequalities and the homology of groups Invent. Math. 1993 531 560

[7] Bowditch, B. H. A short proof that a subquadratic isoperimetric inequality implies a linear one Michigan Math. J. 1995 103 107

[8] Bridson, M. R., Pittet, Ch. Isoperimetric inequalities for the fundamental groups of torus bundles over the circle Geom. Dedicata 1994 203 219

[9] Gersten, Steve M. Isoperimetric and isodiametric functions of finite presentations 1993 79 96

[10] Gromov, M. Hyperbolic groups 1987 75 263

[11] Gromov, M. Asymptotic invariants of infinite groups 1993 1 295

[12] Stallings, John R., Gersten, S. M. Casson’s idea about 3-manifolds whose universal cover is 𝑅³ Internat. J. Algebra Comput. 1991 395 406

[13] Lyndon, Roger C., Schupp, Paul E. Combinatorial group theory 1977

[14] Mitchell, John On Carnot-Carathéodory metrics J. Differential Geom. 1985 35 45

[15] Geometric group theory. Vol. 1 1993

[16] Ol′Shanskiĭ, A. Yu. Hyperbolicity of groups with subquadratic isoperimetric inequality Internat. J. Algebra Comput. 1991 281 289

[17] Ol′Shanskiĭ, A. Yu. On the distortion of subgroups of finitely presented groups Mat. Sb. 1997 51 98

[18] Papasoglu, Panagiotis On the sub-quadratic isoperimetric inequality 1995 149 157

[19] Pittet, Ch. Isoperimetric inequalities for homogeneous nilpotent groups 1995 159 164

[20] Geometric group theory 1995

Cité par Sources :