Separation of semialgebraic sets
Journal of the American Mathematical Society, Tome 12 (1999) no. 3, pp. 703-728 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

In this paper we study the problem of deciding whether two disjoint semialgebraic sets of an algebraic variety over $\mathbb R$ are separable by a polynomial. For that we isolate a dense subfamily of Spaces of Orderings, named Geometric, which suffice to test separation and that reduce the problem to the study of the behaviour of the semialgebraic sets in their boundary. Then we derive several characterizations for the generic separation, among which there is a Geometric Criterion that can be tested algorithmically. Finally we show how to check recursively whether we can pass from generic separation to separation, obtaining a decision procedure for solving the problem.
DOI : 10.1090/S0894-0347-99-00302-1

Acquistapace, F. 1 ; Andradas, C. 2 ; Broglia, F. 1

1 Dipartimento di Matematica, Università di Pisa, Via Buonarroti 2, 56127 Pisa, Italy
2 Departamento de Algebra, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain
@article{10_1090_S0894_0347_99_00302_1,
     author = {Acquistapace, F. and Andradas, C. and Broglia, F.},
     title = {Separation of semialgebraic sets},
     journal = {Journal of the American Mathematical Society},
     pages = {703--728},
     year = {1999},
     volume = {12},
     number = {3},
     doi = {10.1090/S0894-0347-99-00302-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00302-1/}
}
TY  - JOUR
AU  - Acquistapace, F.
AU  - Andradas, C.
AU  - Broglia, F.
TI  - Separation of semialgebraic sets
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 703
EP  - 728
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00302-1/
DO  - 10.1090/S0894-0347-99-00302-1
ID  - 10_1090_S0894_0347_99_00302_1
ER  - 
%0 Journal Article
%A Acquistapace, F.
%A Andradas, C.
%A Broglia, F.
%T Separation of semialgebraic sets
%J Journal of the American Mathematical Society
%D 1999
%P 703-728
%V 12
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00302-1/
%R 10.1090/S0894-0347-99-00302-1
%F 10_1090_S0894_0347_99_00302_1
Acquistapace, F.; Andradas, C.; Broglia, F. Separation of semialgebraic sets. Journal of the American Mathematical Society, Tome 12 (1999) no. 3, pp. 703-728. doi: 10.1090/S0894-0347-99-00302-1

[1] Acquistapace, F., Broglia, F., Fortuna, E. A separation theorem in dimension 3 Nagoya Math. J. 1996 171 193

[2] Andradas, Carlos, Bröcker, Ludwig, Ruiz, Jesús M. Constructible sets in real geometry 1996

[3] Andradas, Carlos, Ruiz, Jesús M. More on basic semialgebraic sets 1992 128 139

[4] Andradas, Carlos, Ruiz, Jesús Low-dimensional sections of basic semialgebraic sets Illinois J. Math. 1994 303 326

[5] Andradas, Carlos, Ruiz, Jesús M. Ubiquity of Łojasiewicz’s example of a nonbasic semialgebraic set Michigan Math. J. 1994 465 472

[6] Becker, E., Neuhaus, R. Computation of real radicals of polynomial ideals 1993 1 20

[7] Bierstone, Edward, Milman, Pierre D. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant Invent. Math. 1997 207 302

[8] Bochnak, J., Coste, M., Roy, M.-F. Géométrie algébrique réelle 1987

[9] Bochnak, Jacek, Efroymson, Gustave Real algebraic geometry and the 17th Hilbert problem Math. Ann. 1980 213 241

[10] Bröcker, Ludwig Spaces of orderings and semialgebraic sets 1984 231 248

[11] Bröcker, Ludwig Characterization of fans and hereditarily Pythagorean fields Math. Z. 1976 149 163

[12] Bröcker, Ludwig On the separation of basic semialgebraic sets by polynomials Manuscripta Math. 1988 497 508

[13] Bröcker, Ludwig On basic semialgebraic sets Exposition. Math. 1991 289 334

[14] Bröcker, Ludwig, Stengle, Gilbert On the Mostowski number Math. Z. 1990 629 633

[15] Hironaka, Heisuke Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II Ann. of Math. (2) 1964

[16] Mostowski, Tadeusz Some properties of the ring of Nash functions Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1976 245 266

[17] Marshall, Murray Classification of finite spaces of orderings Canadian J. Math. 1979 320 330

[18] Marshall, Murray A. Quotients and inverse limits of spaces of orderings Canadian J. Math. 1979 604 616

[19] Marshall, Murray The Witt ring of a space of orderings Trans. Amer. Math. Soc. 1980 505 521

[20] Marshall, Murray Spaces of orderings. IV Canadian J. Math. 1980 603 627

[21] Marshall, Murray A. Spaces of orderings and abstract real spectra 1996

[22] Becker, E., Neuhaus, R. Computation of real radicals of polynomial ideals 1993 1 20

[23] Ruiz, Jesús M. A note on a separation problem Arch. Math. (Basel) 1984 422 426

Cité par Sources :