The honeycomb model of 𝐺𝐿_{𝑛}(ℂ) tensor products I: Proof of the saturation conjecture
Journal of the American Mathematical Society, Tome 12 (1999) no. 4, pp. 1055-1090 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Recently Klyachko has given linear inequalities on triples $(\lambda ,\mu ,\nu )$ of dominant weights of $GL_n(\mathbb {C})$ necessary for the corresponding Littlewood-Richardson coefficient $\dim (V_\lambda \otimes V_\mu \otimes V_\nu )^{GL_n(\mathbb {C})}$ to be positive. We show that these conditions are also sufficient, which was known as the saturation conjecture. In particular this proves Horn’s conjecture from 1962, giving a recursive system of inequalities. Our principal tool is a new model of the Berenstein-Zelevinsky cone for computing Littlewood-Richardson coefficients, the honeycomb model. The saturation conjecture is a corollary of our main result, which is the existence of a particularly well-behaved honeycomb associated to regular triples $(\lambda ,\mu ,\nu )$.
DOI : 10.1090/S0894-0347-99-00299-4

Knutson, Allen  1 , 2   ; Tao, Terence  3

1 Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254
2 Department of Mathematics, University of California Berkeley, Berkeley, California 94720-3840
3 Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095-1555
@article{10_1090_S0894_0347_99_00299_4,
     author = {Knutson, Allen and Tao, Terence},
     title = {The honeycomb model of {\ensuremath{\mathit{G}}\ensuremath{\mathit{L}}_{\ensuremath{\mathit{n}}}(\ensuremath{\mathbb{C}})} tensor products {I:} {Proof} of the saturation conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {1055--1090},
     year = {1999},
     volume = {12},
     number = {4},
     doi = {10.1090/S0894-0347-99-00299-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00299-4/}
}
TY  - JOUR
AU  - Knutson, Allen
AU  - Tao, Terence
TI  - The honeycomb model of 𝐺𝐿_{𝑛}(ℂ) tensor products I: Proof of the saturation conjecture
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 1055
EP  - 1090
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00299-4/
DO  - 10.1090/S0894-0347-99-00299-4
ID  - 10_1090_S0894_0347_99_00299_4
ER  - 
%0 Journal Article
%A Knutson, Allen
%A Tao, Terence
%T The honeycomb model of 𝐺𝐿_{𝑛}(ℂ) tensor products I: Proof of the saturation conjecture
%J Journal of the American Mathematical Society
%D 1999
%P 1055-1090
%V 12
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00299-4/
%R 10.1090/S0894-0347-99-00299-4
%F 10_1090_S0894_0347_99_00299_4
Knutson, Allen; Tao, Terence. The honeycomb model of 𝐺𝐿_{𝑛}(ℂ) tensor products I: Proof of the saturation conjecture. Journal of the American Mathematical Society, Tome 12 (1999) no. 4, pp. 1055-1090. doi: 10.1090/S0894-0347-99-00299-4

[1] Billera, Louis J., Sturmfels, Bernd Fiber polytopes Ann. of Math. (2) 1992 527 549

[2] Berenstein, A. D., Zelevinsky, A. V. Triple multiplicities for 𝑠𝑙(𝑟+1) and the spectrum of the exterior algebra of the adjoint representation J. Algebraic Combin. 1992 7 22

[3] Èlashvili, A. G. Invariant algebras 1992 57 64

[4] Fulton, William, Harris, Joe Representation theory 1991

[5] Horn, Alfred Eigenvalues of sums of Hermitian matrices Pacific J. Math. 1962 225 241

[6] Kapranov, M. M., Sturmfels, B., Zelevinsky, A. V. Quotients of toric varieties Math. Ann. 1991 643 655

[7] Kumar, Shrawan Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture Invent. Math. 1988 117 130

[8] Kuperberg, Greg Spiders for rank 2 Lie algebras Comm. Math. Phys. 1996 109 151

[9] Mumford, D., Fogarty, J., Kirwan, F. Geometric invariant theory 1994

[10] Ziegler, Günter M. Lectures on polytopes 1995

Cité par Sources :