Cyclotomic integers and finite geometry
Journal of the American Mathematical Society, Tome 12 (1999) no. 4, pp. 929-952 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We obtain an upper bound for the absolute value of cyclotomic integers which has strong implications on several combinatorial structures including (relative) difference sets, quasiregular projective planes, planar functions, and group invariant weighing matrices. Our results are of broader applicability than all previously known nonexistence theorems for these combinatorial objects. We will show that the exponent of an abelian group $G$ containing a $(v,k,\lambda ,n)$-difference set cannot exceed $\left (\frac {2^{s-1}F(v,n)}{n}\right )^{1/2}v$ where $s$ is the number of odd prime divisors of $v$ and $F(v,n)$ is a number-theoretic parameter whose order of magnitude usually is the squarefree part of $v$. One of the consequences is that for any finite set $P$ of primes there is a constant $C$ such that $\exp (G)\le C|G|^{1/2}$ for any abelian group $G$ containing a Hadamard difference set whose order is a product of powers of primes in $P$. Furthermore, we are able to verify Ryser’s conjecture for most parameter series of known difference sets. This includes a striking progress towards the circulant Hadamard matrix conjecture. A computer search shows that there is no Barker sequence of length $l$ with $13$. Finally, we obtain new necessary conditions for the existence of quasiregular projective planes and group invariant weighing matrices including asymptotic exponent bounds for cases which previously had been completely intractable.
DOI : 10.1090/S0894-0347-99-00298-2

Schmidt, Bernhard  1 , 2

1 Department of Mathematics, 253-37 Caltech, Pasadena, California 91125
2 Am alten Hof 12, 63683 Ortenberg, Germany
@article{10_1090_S0894_0347_99_00298_2,
     author = {Schmidt, Bernhard},
     title = {Cyclotomic integers and finite geometry},
     journal = {Journal of the American Mathematical Society},
     pages = {929--952},
     year = {1999},
     volume = {12},
     number = {4},
     doi = {10.1090/S0894-0347-99-00298-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00298-2/}
}
TY  - JOUR
AU  - Schmidt, Bernhard
TI  - Cyclotomic integers and finite geometry
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 929
EP  - 952
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00298-2/
DO  - 10.1090/S0894-0347-99-00298-2
ID  - 10_1090_S0894_0347_99_00298_2
ER  - 
%0 Journal Article
%A Schmidt, Bernhard
%T Cyclotomic integers and finite geometry
%J Journal of the American Mathematical Society
%D 1999
%P 929-952
%V 12
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00298-2/
%R 10.1090/S0894-0347-99-00298-2
%F 10_1090_S0894_0347_99_00298_2
Schmidt, Bernhard. Cyclotomic integers and finite geometry. Journal of the American Mathematical Society, Tome 12 (1999) no. 4, pp. 929-952. doi: 10.1090/S0894-0347-99-00298-2

[1] Arasu, K. T., Davis, James A., Jedwab, J. A nonexistence result for abelian Menon difference sets using perfect binary arrays Combinatorica 1995 311 317

[2] Arasu, K. T., Davis, James A., Jedwab, Jonathan, Ma, Siu Lun, Mcfarland, Robert L. Exponent bounds for a family of abelian difference sets 1996 129 143

[3] Arasu, K. T., Xiang, Qing Multiplier theorems J. Combin. Des. 1995 257 268

[4] Baumert, Leonard D. Cyclic difference sets 1971

[5] Beth, Thomas, Jungnickel, Dieter, Lenz, Hanfried Design theory 1986 688

[6] Borevich, A. I., Shafarevich, I. R. Number theory 1966

[7] Chan, W. K. Necessary conditions for Menon difference sets Des. Codes Cryptogr. 1993 147 154

[8] Chan, Wai-Kiu, Siu, Man Keung, Ma, Siu Lun Nonexistence of certain perfect arrays Discrete Math. 1994 107 113

[9] Chen, Yu Qing On the existence of abelian Hadamard difference sets and a new family of difference sets Finite Fields Appl. 1997 234 256

[10] Craigen, R. The structure of weighing matrices having large weights Des. Codes Cryptogr. 1995 199 216

[11] Craigen, R., Kharaghani, H. Hadamard matrices from weighing matrices via signed groups Des. Codes Cryptogr. 1997 49 58

[12] Davis, James A., Jedwab, Jonathan Nested Hadamard difference sets J. Statist. Plann. Inference 1997 13 20

[13] Dembowski, Peter, Piper, Fred Quasiregular collineation groups of finite projective planes Math. Z. 1967 53 75

[14] Eades, Peter, Hain, Richard M. On circulant weighing matrices Ars Combin. 1976 265 284

[15] Eliahou, Shalom, Kervaire, Michel Barker sequences and difference sets Enseign. Math. (2) 1992 345 382

[16] Eliahou, Shalom, Kervaire, Michel, Saffari, Bahman A new restriction on the lengths of Golay complementary sequences J. Combin. Theory Ser. A 1990 49 59

[17] Ganley, Michael J. On a paper of P. Dembowski and T. G. Ostrom: “Planes of order 𝑛 with collineation groups of order 𝑛²” (Math. Z. 103 (1968), 239–258) Arch. Math. (Basel) 1976 93 98

[18] Geramita, Anthony V., Geramita, Joan Murphy, Wallis, Jennifer Seberry Orthogonal designs Linear and Multilinear Algebra 1975/76 281 306

[19] Geramita, Anthony V., Wallis, Jennifer Seberry Orthogonal designs. III. Weighing matrices Utilitas Math. 1974 209 236

[20] Gysin, Marc, Seberry, Jennifer On the weighing matrices of order 4𝑛 and weight 4𝑛-2 and 2𝑛-1 Australas. J. Combin. 1995 157 174

[21] Birkhoff, Garrett, Ward, Morgan A characterization of Boolean algebras Ann. of Math. (2) 1939 609 610

[22] Hardy, G. H., Wright, E. M. An introduction to the theory of numbers 1979

[23] Ireland, Kenneth, Rosen, Michael A classical introduction to modern number theory 1990

[24] Jacobson, Nathan Basic algebra. I 1985

[25] Jungnickel, Dieter On a theorem of Ganley Graphs Combin. 1987 141 143

[26] Koukouvinos, Christos, Seberry, Jennifer Weighing matrices and their applications J. Statist. Plann. Inference 1997 91 101

[27] Lander, Eric S. Symmetric designs: an algebraic approach 1983

[28] De Launey, Warwick On the nonexistence of generalised weighing matrices Ars Combin. 1984 117 132

[29] Ma, S. L. Planar functions, relative difference sets, and character theory J. Algebra 1996 342 356

[30] Maclane, Saunders Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45

[31] Mann, Henry B. Addition theorems: The addition theorems of group theory and number theory 1965

[32] Mcfarland, Robert L. Difference sets in abelian groups of order 4𝑝² Mitt. Math. Sem. Giessen 1989

[33] Mcfarland, Robert L. Sub-difference sets of Hadamard difference sets J. Combin. Theory Ser. A 1990 112 122

[34] Mcfarland, Robert L. Necessary conditions for Hadamard difference sets 1990 257 272

[35] Mullin, R. C. A note on balanced weighing matrices 1975 28 41

[36] Stanton, R. G., Mullin, R. C. On the nonexistence of a class of circulant balanced weighing matrices SIAM J. Appl. Math. 1976 98 102

[37] Ohmori, Hiroyuki Classification of weighing matrices of order 13 and weight 9 Discrete Math. 1993 55 78

[38] Pott, Alexander Finite geometry and character theory 1995

[39] Ray-Chaudhuri, D. K., Xiang, Qing New necessary conditions for abelian Hadamard difference sets J. Statist. Plann. Inference 1997 69 79

[40] Ribenboim, Paulo Algebraic numbers 1972

[41] Rosser, J. Barkley, Schoenfeld, Lowell Approximate formulas for some functions of prime numbers Illinois J. Math. 1962 64 94

[42] Ryser, Herbert John Combinatorial mathematics 1963

[43] Wallis, Jennifer Seberry, Whiteman, Albert Leon Some results on weighing matrices Bull. Austral. Math. Soc. 1975 433 447

[44] Turyn, R., Storer, J. On binary sequences Proc. Amer. Math. Soc. 1961 394 399

[45] Turyn, Richard J. Character sums and difference sets Pacific J. Math. 1965 319 346

[46] Turyn, R. Sequences with small correlation 1968 195 228

Cité par Sources :