Double Bruhat cells and total positivity
Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 335-380

Voir la notice de l'article provenant de la source American Mathematical Society

We study the totally nonnegative variety $G_{\ge 0}$ in a semisimple algebraic group $G$. These varieties were introduced by G. Lusztig, and include as a special case the variety of unimodular matrices of a given order whose all minors are nonnegative. The geometric framework for our study is provided by intersecting $G_{\ge 0}$ with double Bruhat cells (intersections of cells of the two Bruhat decompositions of $G$ with respect to opposite Borel subgroups).
DOI : 10.1090/S0894-0347-99-00295-7

Fomin, Sergey 1 ; Zelevinsky, Andrei 2

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
2 Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
@article{10_1090_S0894_0347_99_00295_7,
     author = {Fomin, Sergey and Zelevinsky, Andrei},
     title = {Double {Bruhat} cells and total positivity},
     journal = {Journal of the American Mathematical Society},
     pages = {335--380},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00295-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00295-7/}
}
TY  - JOUR
AU  - Fomin, Sergey
AU  - Zelevinsky, Andrei
TI  - Double Bruhat cells and total positivity
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 335
EP  - 380
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00295-7/
DO  - 10.1090/S0894-0347-99-00295-7
ID  - 10_1090_S0894_0347_99_00295_7
ER  - 
%0 Journal Article
%A Fomin, Sergey
%A Zelevinsky, Andrei
%T Double Bruhat cells and total positivity
%J Journal of the American Mathematical Society
%D 1999
%P 335-380
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00295-7/
%R 10.1090/S0894-0347-99-00295-7
%F 10_1090_S0894_0347_99_00295_7
Fomin, Sergey; Zelevinsky, Andrei. Double Bruhat cells and total positivity. Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 335-380. doi: 10.1090/S0894-0347-99-00295-7

[1] Alperin, J. L., Bell, Rowen B. Groups and representations 1995

[2] Ando, T. Totally positive matrices Linear Algebra Appl. 1987 165 219

[3] Berenstein, Arkady, Fomin, Sergey, Zelevinsky, Andrei Parametrizations of canonical bases and totally positive matrices Adv. Math. 1996 49 149

[4] Bourbaki, N. Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines 1968

[5] Brenti, Francesco Combinatorics and total positivity J. Combin. Theory Ser. A 1995 175 218

[6] Cox, David, Little, John, O’Shea, Donal Ideals, varieties, and algorithms 1997

[7] Cryer, Colin W. The 𝐿𝑈-factorization of totally positive matrices Linear Algebra Appl. 1973 83 92

[8] Deodhar, Vinay V. On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells Invent. Math. 1985 499 511

[9] Fulton, William, Harris, Joe Representation theory 1991

[10] Gantmacher, F. R., Kreä­N, M. G. Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme 1960

[11] Gasca, M., Peã±A, J. M. Total positivity and Neville elimination Linear Algebra Appl. 1992 25 44

[12] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV Inst. Hautes Études Sci. Publ. Math. 1967 361

[13] Humphreys, James E. Reflection groups and Coxeter groups 1990

[14] Karlin, Samuel Total positivity. Vol. I 1968

[15] Maclane, Saunders Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45

[16] Lusztig, G. Total positivity in reductive groups 1994 531 568

[17] Lusztig, George Introduction to quantum groups 1993

[18] Rietsch, Konstanze Intersections of Bruhat cells in real flag varieties Internat. Math. Res. Notices 1997 623 640

[19] Shapiro, B., Shapiro, M., Vainshtein, A. Connected components in the intersection of two open opposite Schubert cells in 𝑆𝐿_{𝑛}(𝑅)/𝐵 Internat. Math. Res. Notices 1997 469 493

[20] Springer, T. A. Linear algebraic groups 1981

[21] Hebroni, P. Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287

Cité par Sources :