Well-posedness in Sobolev spaces of the full water wave problem in 3-D
Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 445-495

Voir la notice de l'article provenant de la source American Mathematical Society

We consider the motion of the interface of a 3-D inviscid, incompressible, irrotational water wave, with air region above water region and surface tension zero. We prove that the motion of the interface of the water wave is not subject to Taylor instability, as long as the interface separates the whole 3-D space into two simply connected $C^{2}$ regions. We prove further the existence and uniqueness of solutions of the full 3-D water wave problem, locally in time, for any initial interface that separates the whole 3-D space into two simply connected regions.
DOI : 10.1090/S0894-0347-99-00290-8

Wu, Sijue 1, 2

1 Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
2 Department of Mathematics, University of Maryland, College Park, Maryland 20742
@article{10_1090_S0894_0347_99_00290_8,
     author = {Wu, Sijue},
     title = {Well-posedness in {Sobolev} spaces of the full water wave problem in {3-D}},
     journal = {Journal of the American Mathematical Society},
     pages = {445--495},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00290-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00290-8/}
}
TY  - JOUR
AU  - Wu, Sijue
TI  - Well-posedness in Sobolev spaces of the full water wave problem in 3-D
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 445
EP  - 495
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00290-8/
DO  - 10.1090/S0894-0347-99-00290-8
ID  - 10_1090_S0894_0347_99_00290_8
ER  - 
%0 Journal Article
%A Wu, Sijue
%T Well-posedness in Sobolev spaces of the full water wave problem in 3-D
%J Journal of the American Mathematical Society
%D 1999
%P 445-495
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00290-8/
%R 10.1090/S0894-0347-99-00290-8
%F 10_1090_S0894_0347_99_00290_8
Wu, Sijue. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 445-495. doi: 10.1090/S0894-0347-99-00290-8

[1] Beale, J. Thomas, Hou, Thomas Y., Lowengrub, John S. Growth rates for the linearized motion of fluid interfaces away from equilibrium Comm. Pure Appl. Math. 1993 1269 1301

[2] Brackx, F., Delanghe, Richard, Sommen, F. Clifford analysis 1982

[3] Coifman, R. R., Mcintosh, A., Meyer, Y. L’intégrale de Cauchy définit un opérateur borné sur 𝐿² pour les courbes lipschitziennes Ann. of Math. (2) 1982 361 387

[4] Coifman, R. R., David, G., Meyer, Y. La solution des conjecture de Calderón Adv. in Math. 1983 144 148

[5] Craig, Walter An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits Comm. Partial Differential Equations 1985 787 1003

[6] Folland, Gerald B. Introduction to partial differential equations 1976

[7] Birkhoff, Garrett Helmholtz and Taylor instability 1962 55 76

[8] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1983

[9] Gilbert, John E., Murray, Margaret A. M. Clifford algebras and Dirac operators in harmonic analysis 1991

[10] Hou, Thomas Y., Teng, Zhen-Huan, Zhang, Pingwen Well-posedness of linearized motion for 3-D water waves far from equilibrium Comm. Partial Differential Equations 1996 1551 1585

[11] Kano, Tadayoshi, Nishida, Takaaki Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde J. Math. Kyoto Univ. 1979 335 370

[12] Kenig, Carlos E. Elliptic boundary value problems on Lipschitz domains 1986 131 183

[13] Kenig, Carlos E. Harmonic analysis techniques for second order elliptic boundary value problems 1994

[14] Mitrea, Marius Clifford wavelets, singular integrals, and Hardy spaces 1994

[15] Mizohata, Sigeru The theory of partial differential equations 1973

[16] Murray, Margaret A. M. The Cauchy integral, Calderón commutators, and conjugations of singular integrals in 𝑅ⁿ Trans. Amer. Math. Soc. 1985 497 518

[17] Nalimov, V. I. The Cauchy-Poisson problem Dinamika Splošn. Sredy 1974

[18] Shinbrot, Marvin The initial value problem for surface waves under gravity. I. The simplest case Indiana Univ. Math. J. 1976 281 300

[19] Stein, Elias M., Weiss, Guido Introduction to Fourier analysis on Euclidean spaces 1971

[20] Stoker, J. J. Water waves: The mathematical theory with applications 1957

[21] Hopkins, Charles Rings with minimal condition for left ideals Ann. of Math. (2) 1939 712 730

[22] Verchota, Gregory Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains J. Funct. Anal. 1984 572 611

[23] Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 2-D Invent. Math. 1997 39 72

[24] Yosihara, Hideaki Gravity waves on the free surface of an incompressible perfect fluid of finite depth Publ. Res. Inst. Math. Sci. 1982 49 96

[25] Andreev, V. K. Ustoĭchivost′neustanovivshikhsya dvizheniĭ zhidkosti so svobodnoĭ granitseĭ 1992 136

Cité par Sources :