Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_99_00290_8,
     author = {Wu, Sijue},
     title = {Well-posedness in {Sobolev} spaces of the full water wave problem in {3-D}},
     journal = {Journal of the American Mathematical Society},
     pages = {445--495},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00290-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00290-8/}
}
                      
                      
                    TY - JOUR AU - Wu, Sijue TI - Well-posedness in Sobolev spaces of the full water wave problem in 3-D JO - Journal of the American Mathematical Society PY - 1999 SP - 445 EP - 495 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00290-8/ DO - 10.1090/S0894-0347-99-00290-8 ID - 10_1090_S0894_0347_99_00290_8 ER -
%0 Journal Article %A Wu, Sijue %T Well-posedness in Sobolev spaces of the full water wave problem in 3-D %J Journal of the American Mathematical Society %D 1999 %P 445-495 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00290-8/ %R 10.1090/S0894-0347-99-00290-8 %F 10_1090_S0894_0347_99_00290_8
Wu, Sijue. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 445-495. doi: 10.1090/S0894-0347-99-00290-8
[1] , , Growth rates for the linearized motion of fluid interfaces away from equilibrium Comm. Pure Appl. Math. 1993 1269 1301
[2] , , Clifford analysis 1982
[3] , , Lâintégrale de Cauchy définit un opérateur borné sur ð¿Â² pour les courbes lipschitziennes Ann. of Math. (2) 1982 361 387
[4] , , La solution des conjecture de Calderón Adv. in Math. 1983 144 148
[5] An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits Comm. Partial Differential Equations 1985 787 1003
[6] Introduction to partial differential equations 1976
[7] Helmholtz and Taylor instability 1962 55 76
[8] , Elliptic partial differential equations of second order 1983
[9] , Clifford algebras and Dirac operators in harmonic analysis 1991
[10] , , Well-posedness of linearized motion for 3-D water waves far from equilibrium Comm. Partial Differential Equations 1996 1551 1585
[11] , Sur les ondes de surface de lâeau avec une justification mathématique des équations des ondes en eau peu profonde J. Math. Kyoto Univ. 1979 335 370
[12] Elliptic boundary value problems on Lipschitz domains 1986 131 183
[13] Harmonic analysis techniques for second order elliptic boundary value problems 1994
[14] Clifford wavelets, singular integrals, and Hardy spaces 1994
[15] The theory of partial differential equations 1973
[16] The Cauchy integral, Calderón commutators, and conjugations of singular integrals in ð â¿ Trans. Amer. Math. Soc. 1985 497 518
[17] The Cauchy-Poisson problem Dinamika Splošn. Sredy 1974
[18] The initial value problem for surface waves under gravity. I. The simplest case Indiana Univ. Math. J. 1976 281 300
[19] , Introduction to Fourier analysis on Euclidean spaces 1971
[20] Water waves: The mathematical theory with applications 1957
[21] Rings with minimal condition for left ideals Ann. of Math. (2) 1939 712 730
[22] Layer potentials and regularity for the Dirichlet problem for Laplaceâs equation in Lipschitz domains J. Funct. Anal. 1984 572 611
[23] Well-posedness in Sobolev spaces of the full water wave problem in 2-D Invent. Math. 1997 39 72
[24] Gravity waves on the free surface of an incompressible perfect fluid of finite depth Publ. Res. Inst. Math. Sci. 1982 49 96
[25] UstoÄchivostâ²neustanovivshikhsya dvizheniÄ zhidkosti so svobodnoÄ granitseÄ 1992 136
Cité par Sources :
