Concerning Nikodym-type sets in 3-dimensional curved spaces
Journal of the American Mathematical Society, Tome 12 (1999) no. 1, pp. 1-31

Voir la notice de l'article provenant de la source American Mathematical Society

We investigate maximal functions involving averages over geo- desics in three-dimensional Riemannian manifolds. We first show that one can easily extend the Euclidean results of Bourgain and Wolff if one assumes constant curvature. These results need not hold if this assumption is dropped. Nonetheless, we formulate a generic geometric condition which allows favorable estimates. Curiously, this condition ensures that one is in some sense as far as possible from the constant curvature case. Assuming this, one can prove dimensional estimates for Nikodym-type sets which are essentially optimal. Optimal estimates for the related maximal functions are still open though.
DOI : 10.1090/S0894-0347-99-00289-1

Sogge, Christopher 1

1 Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218
@article{10_1090_S0894_0347_99_00289_1,
     author = {Sogge, Christopher},
     title = {Concerning {Nikodym-type} sets in 3-dimensional curved spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {1--31},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00289-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00289-1/}
}
TY  - JOUR
AU  - Sogge, Christopher
TI  - Concerning Nikodym-type sets in 3-dimensional curved spaces
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 1
EP  - 31
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00289-1/
DO  - 10.1090/S0894-0347-99-00289-1
ID  - 10_1090_S0894_0347_99_00289_1
ER  - 
%0 Journal Article
%A Sogge, Christopher
%T Concerning Nikodym-type sets in 3-dimensional curved spaces
%J Journal of the American Mathematical Society
%D 1999
%P 1-31
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00289-1/
%R 10.1090/S0894-0347-99-00289-1
%F 10_1090_S0894_0347_99_00289_1
Sogge, Christopher. Concerning Nikodym-type sets in 3-dimensional curved spaces. Journal of the American Mathematical Society, Tome 12 (1999) no. 1, pp. 1-31. doi: 10.1090/S0894-0347-99-00289-1

[1] Bourgain, J. Besicovitch type maximal operators and applications to Fourier analysis Geom. Funct. Anal. 1991 147 187

[2] Bourgain, J. 𝐿^{𝑝}-estimates for oscillatory integrals in several variables Geom. Funct. Anal. 1991 321 374

[3] Cordoba, Antonio The Kakeya maximal function and the spherical summation multipliers Amer. J. Math. 1977 1 22

[4] Falconer, K. J. The geometry of fractal sets 1986

[5] Fefferman, Charles The multiplier problem for the ball Ann. of Math. (2) 1971 330 336

[6] Fefferman, Charles A note on spherical summation multipliers Israel J. Math. 1973 44 52

[7] Gray, Alfred Tubes 1990

[8] Greenleaf, Allan, Seeger, Andreas Fourier integral operators with fold singularities J. Reine Angew. Math. 1994 35 56

[9] Greenleaf, A., Uhlmann, G. Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms Ann. Inst. Fourier (Grenoble) 1990 443 466

[10] Greenleaf, Allan, Uhlmann, Gunther Estimates for singular Radon transforms and pseudodifferential operators with singular symbols J. Funct. Anal. 1990 202 232

[11] Hawking, S. W., Ellis, G. F. R. The large scale structure of space-time 1973

[12] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces 1978

[13] Hã¶Rmander, Lars Fourier integral operators. I Acta Math. 1971 79 183

[14] Melrose, Richard B., Taylor, Michael E. Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle Adv. in Math. 1985 242 315

[15] Mockenhaupt, Gerd, Seeger, Andreas, Sogge, Christopher D. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates J. Amer. Math. Soc. 1993 65 130

[16] Sogge, Christopher D. Propagation of singularities and maximal functions in the plane Invent. Math. 1991 349 376

[17] Sogge, Christopher D. Fourier integrals in classical analysis 1993

[18] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993

[19] Wolff, Thomas An improved bound for Kakeya type maximal functions Rev. Mat. Iberoamericana 1995 651 674

Cité par Sources :