Modularity of certain potentially Barsotti-Tate Galois representations
Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 521-567

Voir la notice de l'article provenant de la source American Mathematical Society

We show that certain potentially semistable lifts of modular mod $l$ representations are themselves modular. As a result we show that any elliptic curve over the rational numbers with conductor not divisible by 27 is modular.
DOI : 10.1090/S0894-0347-99-00287-8

Conrad, Brian 1 ; Diamond, Fred 2 ; Taylor, Richard 

1 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
2 Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08854
@article{10_1090_S0894_0347_99_00287_8,
     author = {Conrad, Brian and Diamond, Fred and Taylor, Richard},
     title = {Modularity of certain potentially {Barsotti-Tate} {Galois} representations},
     journal = {Journal of the American Mathematical Society},
     pages = {521--567},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00287-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00287-8/}
}
TY  - JOUR
AU  - Conrad, Brian
AU  - Diamond, Fred
AU  - Taylor, Richard
TI  - Modularity of certain potentially Barsotti-Tate Galois representations
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 521
EP  - 567
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00287-8/
DO  - 10.1090/S0894-0347-99-00287-8
ID  - 10_1090_S0894_0347_99_00287_8
ER  - 
%0 Journal Article
%A Conrad, Brian
%A Diamond, Fred
%A Taylor, Richard
%T Modularity of certain potentially Barsotti-Tate Galois representations
%J Journal of the American Mathematical Society
%D 1999
%P 521-567
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00287-8/
%R 10.1090/S0894-0347-99-00287-8
%F 10_1090_S0894_0347_99_00287_8
Conrad, Brian; Diamond, Fred; Taylor, Richard. Modularity of certain potentially Barsotti-Tate Galois representations. Journal of the American Mathematical Society, Tome 12 (1999) no. 2, pp. 521-567. doi: 10.1090/S0894-0347-99-00287-8

[1] Bosch, Siegfried, Lã¼Tkebohmert, Werner, Raynaud, Michel Néron models 1990

[2] Brown, Kenneth S. Cohomology of groups 1982

[3] Carayol, Henri Sur les représentations 𝑙-adiques associées aux formes modulaires de Hilbert Ann. Sci. École Norm. Sup. (4) 1986 409 468

[4] Carayol, Henri Sur les représentations galoisiennes modulo 𝑙 attachées aux formes modulaires Duke Math. J. 1989 785 801

[5] Cremona, J. E. Algorithms for modular elliptic curves 1992

[6] Curtis, Charles W., Reiner, Irving Methods of representation theory. Vol. I 1981

[7] Diamond, Fred The refined conjecture of Serre 1995 22 37

[8] Diamond, Fred On deformation rings and Hecke rings Ann. of Math. (2) 1996 137 166

[9] Diamond, Fred The Taylor-Wiles construction and multiplicity one Invent. Math. 1997 379 391

[10] Diamond, Fred, Taylor, Richard Nonoptimal levels of mod 𝑙 modular representations Invent. Math. 1994 435 462

[11] Diamond, Fred, Taylor, Richard Lifting modular mod 𝑙 representations Duke Math. J. 1994 253 269

[12] Edixhoven, Bas The weight in Serre’s conjectures on modular forms Invent. Math. 1992 563 594

[13] Fontaine, Jean-Marc Groupes 𝑝-divisibles sur les corps locaux 1977

[14] Fontaine, Jean-Marc Le corps des périodes 𝑝-adiques Astérisque 1994 59 111

[15] Fontaine, Jean-Marc Représentations 𝑝-adiques semi-stables Astérisque 1994 113 184

[16] Fontaine, Jean-Marc Sur certains types de représentations 𝑝-adiques du groupe de Galois d’un corps local Ann. of Math. (2) 1982 529 577

[17] Fontaine, Jean-Marc, Mazur, Barry Geometric Galois representations 1995 41 78

[18] Gã©Rardin, Paul Facteurs locaux des algèbres simples de rang 4. I 1978 37 77

[19] Groupes de monodromie en géométrie algébrique. I 1972

[20] Schémas en groupes. I: Propriétés générales des schémas en groupes 1970

[21] Ihara, Yasutaka On modular curves over finite fields 1975 161 202

[22] Katz, Nicholas M., Mazur, Barry Arithmetic moduli of elliptic curves 1985

[23] Katz, Nicholas M., Messing, William Some consequences of the Riemann hypothesis for varieties over finite fields Invent. Math. 1974 73 77

[24] Mazur, B. Deforming Galois representations 1989 385 437

[25] Mumford, David Abelian varieties 1970

[26] Ramakrishna, Ravi On a variation of Mazur’s deformation functor Compositio Math. 1993 269 286

[27] Raynaud, Michel Schémas en groupes de type (𝑝,…,𝑝) Bull. Soc. Math. France 1974 241 280

[28] Saito, Takeshi Modular forms and 𝑝-adic Hodge theory Invent. Math. 1997 607 620

[29] Serre, Jean-Pierre Le problème des groupes de congruence pour SL2 Ann. of Math. (2) 1970 489 527

[30] Serre, Jean-Pierre Propriétés galoisiennes des points d’ordre fini des courbes elliptiques Invent. Math. 1972 259 331

[31] Serre, Jean-Pierre Cohomologie Galoisienne 1973

[32] Serre, Jean-Pierre Linear representations of finite groups 1977

[33] Serre, Jean-Pierre Trees 1980

[34] Serre, Jean-Pierre Sur les représentations modulaires de degré 2 de 𝐺𝑎𝑙(\overline{𝐐}/𝐐) Duke Math. J. 1987 179 230

[35] Serre, Jean-Pierre, Tate, John Good reduction of abelian varieties Ann. of Math. (2) 1968 492 517

[36] Shimura, Goro Algebraic number fields and symplectic discontinuous groups Ann. of Math. (2) 1967 503 592

[37] Shimura, Goro Introduction to the arithmetic theory of automorphic functions 1971

[38] Tate, J. T. 𝑝-divisible groups 1967 158 183

[39] Taylor, Richard, Wiles, Andrew Ring-theoretic properties of certain Hecke algebras Ann. of Math. (2) 1995 553 572

[40] Wiles, Andrew Modular elliptic curves and Fermat’s last theorem Ann. of Math. (2) 1995 443 551

Cité par Sources :