Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_99_00286_6,
author = {Koll\~A{\textexclamdown}r, J\~A{\textexclamdown}nos},
title = {Real algebraic threefolds {II.} {Minimal} model program},
journal = {Journal of the American Mathematical Society},
pages = {33--83},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {1999},
doi = {10.1090/S0894-0347-99-00286-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00286-6/}
}
TY - JOUR AU - Kollár, János TI - Real algebraic threefolds II. Minimal model program JO - Journal of the American Mathematical Society PY - 1999 SP - 33 EP - 83 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00286-6/ DO - 10.1090/S0894-0347-99-00286-6 ID - 10_1090_S0894_0347_99_00286_6 ER -
%0 Journal Article %A Kollár, János %T Real algebraic threefolds II. Minimal model program %J Journal of the American Mathematical Society %D 1999 %P 33-83 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00286-6/ %R 10.1090/S0894-0347-99-00286-6 %F 10_1090_S0894_0347_99_00286_6
Kollár, János. Real algebraic threefolds II. Minimal model program. Journal of the American Mathematical Society, Tome 12 (1999) no. 1, pp. 33-83. doi: 10.1090/S0894-0347-99-00286-6
[1] , All knots are algebraic Comment. Math. Helv. 1981 339 351
[2] , Topology of real algebraic sets 1992
[3] , , Singularities of differentiable maps. Vol. I 1985
[4] , , Géométrie algébrique réelle 1987
[5] , , Higher-dimensional complex geometry Astérisque 1988
[6] Elementary contractions of Gorenstein threefolds Math. Ann. 1988 521 525
[7] Introduction to toric varieties 1993
[8] Algebraic topology 1995
[9] , Algebraic topology 1981
[10] Algebraic geometry 1977
[11] 3-Manifolds 1976
[12] The intermediate Jacobian of three-dimensional varieties 1979
[13] Homotopy equivalences of 3-manifolds with boundaries 1979
[14] Boundedness of ð-Fano threefolds 1992 439 445
[15] Divisorial contractions to 3-dimensional terminal quotient singularities 1996 241 246
[16] The structure of algebraic threefolds: an introduction to Moriâs program Bull. Amer. Math. Soc. (N.S.) 1987 211 273
[17] Minimal models of algebraic threefolds: Moriâs program Astérisque 1989
[18] , , Rationally connected varieties J. Algebraic Geom. 1992 429 448
[19] , Classification of three-dimensional flips J. Amer. Math. Soc. 1992 533 703
[20] , Combinatorial group theory 1977
[21] Minimal discrepancy for a terminal cDV singularity is 1 J. Math. Sci. Univ. Tokyo 1996 445 456
[22] , Two fundamental theorems on deformations of polarized varieties Amer. J. Math. 1964 668 684
[23] Geometric topology in dimensions 2 and 3 1977
[24] Threefolds whose canonical bundles are not numerically effective Ann. of Math. (2) 1982 133 176
[25] On 3-dimensional terminal singularities Nagoya Math. J. 1985 43 66
[26] Flip theorem and the existence of minimal models for 3-folds J. Amer. Math. Soc. 1988 117 253
[27] Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287
[28] Canonical 3-folds 1980 273 310
[29] Young personâs guide to canonical singularities 1987 345 414
[30] Knots and links 1976
[31] , Introduction to piecewise-linear topology 1982
[32] The geometries of 3-manifolds Bull. London Math. Soc. 1983 401 487
[33] Upper limits to the real roots of a real algebraic equation Amer. Math. Monthly 1939 334 338
[34] Real algebraic surfaces with rational or elliptic fiberings Math. Z. 1984 465 499
[35] Real algebraic surfaces 1989
[36] Real plane algebraic curves: constructions with controlled topology Algebra i Analiz 1989 1 73
Cité par Sources :