Order 𝑝 automorphisms of the open disc of a 𝑝-adic field
Journal of the American Mathematical Society, Tome 12 (1999) no. 1, pp. 269-303

Voir la notice de l'article provenant de la source American Mathematical Society

Let $k$ be an algebraically closed field of characteristic $p>0,$ $W(k)$ the ring of Witt vectors and $R$ a complete discrete valuation ring dominating $W(k)$ and containing $\zeta ,$ a primitive $p$-th root of unity. Let $\pi$ denote a uniformizing parameter for $R.$ We study order $p$ automorphisms of the formal power series ring $R[[Z]],$ which are defined by a series \begin{equation*}\sigma (Z)=\zeta Z(1+a_{1}Z+\cdots +a_{i}Z^{i}+\cdots )\in R[[Z]].\end{equation*} The set of fixed points of $\sigma$ is denoted by $F_{\sigma }$ and we suppose that they are $K$-rational and that $|F_{\sigma }|=m+1$ for $m\geq 0.$ Let ${\mathcal {D}}^{o}$ be the minimal semi-stable model of the $p$-adic open disc over $R$ in which $F_{\sigma }$ specializes to distinct smooth points. We study the differential data that can be associated to each irreducible component of the special fibre of ${\mathcal {D}}^{o}.$ Using this data we show that if $m$, then the fixed points are equidistant, and that there are only a finite number of conjugacy classes of order $p$ automorphisms in $\operatorname {Aut}_{R}(R[[Z]])$ which are not the identity $\operatorname {mod} (\pi ).$
DOI : 10.1090/S0894-0347-99-00284-2

Green, Barry 1 ; Matignon, Michel 2

1 Department of Mathematics, University of Stellenbosch, Stellenbosch, 7602, South Africa
2 Mathématiques Pures de Bordeaux, UPRS-A 5467, C.N.R.S Université de Bordeaux I, 351, cours de la Libération 33405 – Talence, Cedex, France
@article{10_1090_S0894_0347_99_00284_2,
     author = {Green, Barry and Matignon, Michel},
     title = {Order {\dh}‘ automorphisms of the open disc of a {\dh}‘-adic field},
     journal = {Journal of the American Mathematical Society},
     pages = {269--303},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00284-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00284-2/}
}
TY  - JOUR
AU  - Green, Barry
AU  - Matignon, Michel
TI  - Order 𝑝 automorphisms of the open disc of a 𝑝-adic field
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 269
EP  - 303
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00284-2/
DO  - 10.1090/S0894-0347-99-00284-2
ID  - 10_1090_S0894_0347_99_00284_2
ER  - 
%0 Journal Article
%A Green, Barry
%A Matignon, Michel
%T Order 𝑝 automorphisms of the open disc of a 𝑝-adic field
%J Journal of the American Mathematical Society
%D 1999
%P 269-303
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00284-2/
%R 10.1090/S0894-0347-99-00284-2
%F 10_1090_S0894_0347_99_00284_2
Green, Barry; Matignon, Michel. Order 𝑝 automorphisms of the open disc of a 𝑝-adic field. Journal of the American Mathematical Society, Tome 12 (1999) no. 1, pp. 269-303. doi: 10.1090/S0894-0347-99-00284-2

[1] Bourbaki, N. Éléments de mathématique. Fascicule XXVIII. Algèbre commutative. Chapitre 3: Graduations, filtrations et topologies. Chapitre 4: Idéaux premiers associés et décomposition primaire 1961 183

[2] Coleman, Robert F. Torsion points on curves 1987 235 247

[3] Coleman, Robert, Mccallum, William Stable reduction of Fermat curves and Jacobi sum Hecke characters J. Reine Angew. Math. 1988 41 101

[4] Crew, Richard M. Etale 𝑝-covers in characteristic 𝑝 Compositio Math. 1984 31 45

[5] Sispanov, Sergio Generalización del teorema de Laguerre Bol. Mat. 1939 113 117

[6] Hazewinkel, Michiel Formal groups and applications 1978

[7] Milne, James S. Étale cohomology 1980

[8] Oort, Frans Lifting algebraic curves, abelian varieties, and their endomorphisms to characteristic zero 1987 165 195

[9] Sekiguchi, T., Oort, F., Suwa, N. On the deformation of Artin-Schreier to Kummer Ann. Sci. École Norm. Sup. (4) 1989 345 375

[10] Raynaud, M. Revêtements de la droite affine en caractéristique 𝑝>0 et conjecture d’Abhyankar Invent. Math. 1994 425 462

[11] Raynaud, Michel Mauvaise réduction des courbes et 𝑝-rang C. R. Acad. Sci. Paris Sér. I Math. 1994 1279 1282

[12] Raynaud, Michel 𝑝-groupes et réduction semi-stable des courbes 1990 179 197

[13] Roquette, Peter Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahlcharakteristik Math. Z. 1970 157 163

[14] Silverman, Joseph H. The arithmetic of elliptic curves 1986

Cité par Sources :