Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case
Journal of the American Mathematical Society, Tome 12 (1999) no. 1, pp. 145-171

Voir la notice de l'article provenant de la source American Mathematical Society

We establish global wellposedness and scattering for the $H^{1}$- critical defocusing NLS in 3D \begin{equation*}iu_{t}+\Delta u - u|u|^{4}=0 \end{equation*} assuming radial data $\phi \in H^{s}$, $s\geq 1$. In particular, it proves global existence of classical solutions in the radial case. The same result is obtained in 4D for the equation \begin{equation*}iu_{t}+\Delta u -u|u|^{2} =0. \end{equation*}
DOI : 10.1090/S0894-0347-99-00283-0

Bourgain, J. 1

1 School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
@article{10_1090_S0894_0347_99_00283_0,
     author = {Bourgain, J.},
     title = {Global wellposedness of defocusing critical nonlinear {Schr\~A{\textparagraph}dinger} equation in the radial case},
     journal = {Journal of the American Mathematical Society},
     pages = {145--171},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00283-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00283-0/}
}
TY  - JOUR
AU  - Bourgain, J.
TI  - Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 145
EP  - 171
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00283-0/
DO  - 10.1090/S0894-0347-99-00283-0
ID  - 10_1090_S0894_0347_99_00283_0
ER  - 
%0 Journal Article
%A Bourgain, J.
%T Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case
%J Journal of the American Mathematical Society
%D 1999
%P 145-171
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00283-0/
%R 10.1090/S0894-0347-99-00283-0
%F 10_1090_S0894_0347_99_00283_0
Bourgain, J. Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. Journal of the American Mathematical Society, Tome 12 (1999) no. 1, pp. 145-171. doi: 10.1090/S0894-0347-99-00283-0

[1] Lin, Jeng Eng, Strauss, Walter A. Decay and scattering of solutions of a nonlinear Schrödinger equation J. Functional Analysis 1978 245 263

[2] Struwe, Michael Globally regular solutions to the 𝑢⁵ Klein-Gordon equation Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1988

[3] Grillakis, Manoussos G. Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity Ann. of Math. (2) 1990 485 509

[4] Shatah, Jalal, Struwe, Michael Regularity results for nonlinear wave equations Ann. of Math. (2) 1993 503 518

[5] Cazenave, Thierry, Weissler, Fred B. The Cauchy problem for the critical nonlinear Schrödinger equation in 𝐻^{𝑠} Nonlinear Anal. 1990 807 836

[6] Ginibre, J., Velo, G. Scattering theory in the energy space for a class of nonlinear Schrödinger equations J. Math. Pures Appl. (9) 1985 363 401

[7] Ginibre, Jean, Velo, Giorgio On a class of nonlinear Schrödinger equations with nonlocal interaction Math. Z. 1980 109 136

[8] Strichartz, Robert S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations Duke Math. J. 1977 705 714

Cité par Sources :