On the optimal local regularity for the Yang-Mills equations in ℝ⁴⁺¹
Journal of the American Mathematical Society, Tome 12 (1999) no. 1, pp. 93-116

Voir la notice de l'article provenant de la source American Mathematical Society

The aim of the paper is to develop the Fourier Analysis techniques needed in the study of optimal well-posedness and global regularity properties of the Yang-Mills equations in Minkowski space-time $\mathbb {R}^{n+1}$, for the case of the critical dimension $n=4$. We introduce new functional spaces and prove new bilinear estimates for solutions of the homogeneous wave equation, which can be viewed as generalizations of the well-known Strichartz-Pecher inequalities.
DOI : 10.1090/S0894-0347-99-00282-9

Klainerman, Sergiu 1 ; Tataru, Daniel 1

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_99_00282_9,
     author = {Klainerman, Sergiu and Tataru, Daniel},
     title = {On the optimal local regularity for the {Yang-Mills} equations in {\^a„\^a{\textasciiacute}\^a{\textordmasculine}\^A{\textonesuperior}}},
     journal = {Journal of the American Mathematical Society},
     pages = {93--116},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1999},
     doi = {10.1090/S0894-0347-99-00282-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00282-9/}
}
TY  - JOUR
AU  - Klainerman, Sergiu
AU  - Tataru, Daniel
TI  - On the optimal local regularity for the Yang-Mills equations in ℝ⁴⁺¹
JO  - Journal of the American Mathematical Society
PY  - 1999
SP  - 93
EP  - 116
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00282-9/
DO  - 10.1090/S0894-0347-99-00282-9
ID  - 10_1090_S0894_0347_99_00282_9
ER  - 
%0 Journal Article
%A Klainerman, Sergiu
%A Tataru, Daniel
%T On the optimal local regularity for the Yang-Mills equations in ℝ⁴⁺¹
%J Journal of the American Mathematical Society
%D 1999
%P 93-116
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-99-00282-9/
%R 10.1090/S0894-0347-99-00282-9
%F 10_1090_S0894_0347_99_00282_9
Klainerman, Sergiu; Tataru, Daniel. On the optimal local regularity for the Yang-Mills equations in ℝ⁴⁺¹. Journal of the American Mathematical Society, Tome 12 (1999) no. 1, pp. 93-116. doi: 10.1090/S0894-0347-99-00282-9

[1] Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations Geom. Funct. Anal. 1993 107 156

[2] Brenner, Philip On 𝐿_{𝑝}-𝐿_{𝑝′} estimates for the wave-equation Math. Z. 1975 251 254

[3] Ginibre, J., Velo, G. Generalized Strichartz inequalities for the wave equation J. Funct. Anal. 1995 50 68

[4] Kenig, Carlos E., Ponce, Gustavo, Vega, Luis The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices Duke Math. J. 1993 1 21

[5] Klainerman, S., Machedon, M. Space-time estimates for null forms and the local existence theorem Comm. Pure Appl. Math. 1993 1221 1268

[6] Klainerman, S., Machedon, M. On the Maxwell-Klein-Gordon equation with finite energy Duke Math. J. 1994 19 44

[7] Klainerman, S., Machedon, M. Finite energy solutions of the Yang-Mills equations in 𝐑³⁺¹ Ann. of Math. (2) 1995 39 119

[8] Klainerman, S., Machedon, M. Smoothing estimates for null forms and applications Duke Math. J. 1995

[9] Klainerman, Sergiu, Machedon, Matei Remark on Strichartz-type inequalities Internat. Math. Res. Notices 1996 201 220

[10] Klainerman, Sergiu, Machedon, Matei On the regularity properties of a model problem related to wave maps Duke Math. J. 1997 553 589

[11] Strichartz, Robert S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations Duke Math. J. 1977 705 714

[12] Tataru, Daniel The 𝑋^{𝑠}_{𝜃} spaces and unique continuation for solutions to the semilinear wave equation Comm. Partial Differential Equations 1996 841 887

Cité par Sources :