Radon transforms and finite type conditions
Journal of the American Mathematical Society, Tome 11 (1998) no. 4, pp. 869-897

Voir la notice de l'article provenant de la source American Mathematical Society

We prove regularity of Radon type integral operators in $L^{p}$-Sobolev spaces.
DOI : 10.1090/S0894-0347-98-00280-X

Seeger, Andreas 1

1 Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
@article{10_1090_S0894_0347_98_00280_X,
     author = {Seeger, Andreas},
     title = {Radon transforms and finite type conditions},
     journal = {Journal of the American Mathematical Society},
     pages = {869--897},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00280-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00280-X/}
}
TY  - JOUR
AU  - Seeger, Andreas
TI  - Radon transforms and finite type conditions
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 869
EP  - 897
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00280-X/
DO  - 10.1090/S0894-0347-98-00280-X
ID  - 10_1090_S0894_0347_98_00280_X
ER  - 
%0 Journal Article
%A Seeger, Andreas
%T Radon transforms and finite type conditions
%J Journal of the American Mathematical Society
%D 1998
%P 869-897
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00280-X/
%R 10.1090/S0894-0347-98-00280-X
%F 10_1090_S0894_0347_98_00280_X
Seeger, Andreas. Radon transforms and finite type conditions. Journal of the American Mathematical Society, Tome 11 (1998) no. 4, pp. 869-897. doi: 10.1090/S0894-0347-98-00280-X

[1] Christ, Michael Hilbert transforms along curves. I. Nilpotent groups Ann. of Math. (2) 1985 575 596

[2] Christ, Michael Failure of an endpoint estimate for integrals along curves 1995 163 168

[3] Greenleaf, Allan, Seeger, Andreas Fourier integral operators with fold singularities J. Reine Angew. Math. 1994 35 56

[4] Greenleaf, A., Uhlmann, G. Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms Ann. Inst. Fourier (Grenoble) 1990 443 466

[5] Greenleaf, Allan, Uhlmann, Gunther Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. II Duke Math. J. 1991 415 444

[6] Guillemin, Victor Cosmology in (2+1)-dimensions, cyclic models, and deformations of 𝑀_{2,1} 1989

[7] Hã¶Rmander, Lars Hypoelliptic second order differential equations Acta Math. 1967 147 171

[8] Hã¶Rmander, Lars Fourier integral operators. I Acta Math. 1971 79 183

[9] Kohn, J. J. Boundary behavior of 𝛿 on weakly pseudo-convex manifolds of dimension two J. Differential Geometry 1972 523 542

[10] Melrose, Richard B., Taylor, Michael E. Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle Adv. in Math. 1985 242 315

[11] Phong, D. H. Singular integrals and Fourier integral operators 1995 286 320

[12] Phong, D. H., Stein, E. M. Hilbert integrals, singular integrals, and Radon transforms. I Acta Math. 1986 99 157

[13] Phong, D. H., Stein, E. M. Radon transforms and torsion Internat. Math. Res. Notices 1991 49 60

[14] Phong, D. H., Stein, E. M. Models of degenerate Fourier integral operators and Radon transforms Ann. of Math. (2) 1994 703 722

[15] Rothschild, Linda Preiss, Stein, E. M. Hypoelliptic differential operators and nilpotent groups Acta Math. 1976 247 320

[16] Seeger, Andreas Degenerate Fourier integral operators in the plane Duke Math. J. 1993 685 745

[17] Smith, Hart F., Sogge, Christopher D. 𝐿^{𝑝} regularity for the wave equation with strictly convex obstacles Duke Math. J. 1994 97 153

[18] Sogge, C. D., Stein, E. M. Averages over hypersurfaces. Smoothness of generalized Radon transforms J. Analyse Math. 1990 165 188

[19] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993

[20] Sternberg, Shlomo Lectures on differential geometry 1983

Cité par Sources :