Grothendieck’s theorem on non-abelian 𝐻² and local-global principles
Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 731-750

Voir la notice de l'article provenant de la source American Mathematical Society

A theorem of Grothendieck asserts that over a perfect field $k$ of cohomological dimension one, all non-abelian $H^{2}$-cohomology sets of algebraic groups are trivial. The purpose of this paper is to establish a formally real generalization of this theorem. The generalization — to the context of perfect fields of virtual cohomological dimension one — takes the form of a local-global principle for the $H^{2}$-sets with respect to the orderings of the field. This principle asserts in particular that an element in $H^{2}$ is neutral precisely when it is neutral in the real closure with respect to every ordering in a dense subset of the real spectrum of $k$. Our techniques provide a new proof of Grothendieck’s original theorem. An application to homogeneous spaces over $k$ is also given.
DOI : 10.1090/S0894-0347-98-00271-9

Flicker, Yuval 1 ; Scheiderer, Claus 2 ; Sujatha, R. 3

1 Department of Mathematics, The Ohio State University, 231 W. 18th Ave., Columbus, Ohio 43210-1174
2 Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
3 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400005, India
@article{10_1090_S0894_0347_98_00271_9,
     author = {Flicker, Yuval and Scheiderer, Claus and Sujatha, R.},
     title = {Grothendieck\^a€™s theorem on non-abelian {{\dh}{\guillemotright}\^A{\texttwosuperior}} and local-global principles},
     journal = {Journal of the American Mathematical Society},
     pages = {731--750},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00271-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00271-9/}
}
TY  - JOUR
AU  - Flicker, Yuval
AU  - Scheiderer, Claus
AU  - Sujatha, R.
TI  - Grothendieck’s theorem on non-abelian 𝐻² and local-global principles
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 731
EP  - 750
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00271-9/
DO  - 10.1090/S0894-0347-98-00271-9
ID  - 10_1090_S0894_0347_98_00271_9
ER  - 
%0 Journal Article
%A Flicker, Yuval
%A Scheiderer, Claus
%A Sujatha, R.
%T Grothendieck’s theorem on non-abelian 𝐻² and local-global principles
%J Journal of the American Mathematical Society
%D 1998
%P 731-750
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00271-9/
%R 10.1090/S0894-0347-98-00271-9
%F 10_1090_S0894_0347_98_00271_9
Flicker, Yuval; Scheiderer, Claus; Sujatha, R. Grothendieck’s theorem on non-abelian 𝐻² and local-global principles. Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 731-750. doi: 10.1090/S0894-0347-98-00271-9

[1] Bayer-Fluckiger, E., Parimala, R. Galois cohomology of the classical groups over fields of cohomological dimension ≤2 Invent. Math. 1995 195 229

[2] Borel, A., Serre, J.-P. Théorèmes de finitude en cohomologie galoisienne Comment. Math. Helv. 1964 111 164

[3] Borovoi, Mikhail V. Abelianization of the second nonabelian Galois cohomology Duke Math. J. 1993 217 239

[4] Breen, Lawrence Tannakian categories 1994 337 376

[5] Colliot-Thã©Lã¨Ne, Jean-Louis Groupes linéaires sur les corps de fonctions de courbes réelles J. Reine Angew. Math. 1996 139 167

[6] Demazure, Michel, Gabriel, Pierre Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs 1970

[7] Douai, Jean-Claude Cohomologie galoisienne des groupes semi-simples définis sur les corps globaux C. R. Acad. Sci. Paris Sér. A-B 1975

[8] Frey, Gerhard, Jarden, Moshe Approximation theory and the rank of abelian varieties over large algebraic fields Proc. London Math. Soc. (3) 1974 112 128

[9] Giraud, Jean Cohomologie non abélienne 1971

[10] Haran, Dan Closed subgroups of 𝐺(𝑄) with involutions J. Algebra 1990 393 411

[11] Mac Lane, Saunders Homology 1963

[12] Arf, Cahit Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper J. Reine Angew. Math. 1939 1 44

[13] Scharlau, Winfried Quadratic and Hermitian forms 1985

[14] Scheiderer, Claus Hasse principles and approximation theorems for homogeneous spaces over fields of virtual cohomological dimension one Invent. Math. 1996 307 365

[15] Serre, Jean-Pierre Groupes algébriques et corps de classes 1959 202

[16] Serre, Jean-Pierre Cohomologie galoisienne 1994

[17] Springer, T. A. Nonabelian 𝐻² in Galois cohomology 1966 164 182

Cité par Sources :