Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras
Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 551-567 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

The aim of this article is to attach to the set of L-S paths of type $\lambda$ in a canonical way a basis of the corresponding representation $V(\lambda )$. This basis has some nice algebraic-geometric properties. For example, it is compatible with restrictions to Schubert varieties and has the “standard monomial property”. As a consequence we get new simple proofs of the normality of Schubert varieties, the surjectivity of the multiplication map or the restriction map for sections of a line bundle on Schubert varieties. Other applications to the defining ideal of Schubert varieties and associated Groebner basis will be discussed in a forthcoming paper.
DOI : 10.1090/S0894-0347-98-00268-9

Littelmann, Peter  1

1 Université Louis Pasteur et Institut Universitaire de France, Institut de Recherche Mathématique Avancée 7, rue René Descartes, F-67084 Strasbourg Cedex, France
@article{10_1090_S0894_0347_98_00268_9,
     author = {Littelmann, Peter},
     title = {Contracting modules and standard monomial theory for symmetrizable {Kac-Moody} algebras},
     journal = {Journal of the American Mathematical Society},
     pages = {551--567},
     year = {1998},
     volume = {11},
     number = {3},
     doi = {10.1090/S0894-0347-98-00268-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00268-9/}
}
TY  - JOUR
AU  - Littelmann, Peter
TI  - Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 551
EP  - 567
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00268-9/
DO  - 10.1090/S0894-0347-98-00268-9
ID  - 10_1090_S0894_0347_98_00268_9
ER  - 
%0 Journal Article
%A Littelmann, Peter
%T Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras
%J Journal of the American Mathematical Society
%D 1998
%P 551-567
%V 11
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00268-9/
%R 10.1090/S0894-0347-98-00268-9
%F 10_1090_S0894_0347_98_00268_9
Littelmann, Peter. Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras. Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 551-567. doi: 10.1090/S0894-0347-98-00268-9

[1] Dehy, Raika Résultats combinatoires sur les modules de Demazure C. R. Acad. Sci. Paris Sér. I Math. 1997 977 980

[2] Demazure, Michel Désingularisation des variétés de Schubert généralisées Ann. Sci. École Norm. Sup. (4) 1974 53 88

[3] Gonciulea, N., Lakshmibai, V. Degenerations of flag and Schubert varieties to toric varieties Transform. Groups 1996 215 248

[4] Kashiwara, Masaki Similarity of crystal bases 1996 177 186

[5] Kashiwara, Masaki Crystal bases of modified quantized enveloping algebra Duke Math. J. 1994 383 413

[6] Kumar, Shrawan Demazure character formula in arbitrary Kac-Moody setting Invent. Math. 1987 395 423

[7] Lakshmibai, V. Tangent spaces to Schubert varieties Math. Res. Lett. 1995 473 477

[8] Lakshmibai, V. Bases for quantum Demazure modules. II 1994 149 168

[9] Lakshmibai, V., Seshadri, C. S. Geometry of 𝐺/𝑃. V J. Algebra 1986 462 557

[10] Lakshmibai, V., Seshadri, C. S. Standard monomial theory 1991 279 322

[11] Littelmann, Peter A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras Invent. Math. 1994 329 346

[12] Littelmann, Peter Paths and root operators in representation theory Ann. of Math. (2) 1995 499 525

[13] Littelmann, Peter A plactic algebra for semisimple Lie algebras Adv. Math. 1996 312 331

[14] Littelmann, Peter Good filtrations and decomposition rules for representations with standard monomial theory J. Reine Angew. Math. 1992 161 180

[15] Lusztig, George Introduction to quantum groups 1993

[16] Mathieu, Olivier Construction d’un groupe de Kac-Moody et applications Compositio Math. 1989 37 60

[17] Mehta, V. B., Ramanathan, A. Schubert varieties in 𝐺/𝐵×𝐺/𝐵 Compositio Math. 1988 355 358

[18] Ramanathan, A. Equations defining Schubert varieties and Frobenius splitting of diagonals Inst. Hautes Études Sci. Publ. Math. 1987 61 90

[19] Ramanan, S., Ramanathan, A. Projective normality of flag varieties and Schubert varieties Invent. Math. 1985 217 224

Cité par Sources :