A new proof of Federer’s structure theorem for 𝑘-dimensional subsets of 𝐑^{𝐍}
Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 693-701
Cet article a éte moissonné depuis la source American Mathematical Society
We prove that Federer’s structure theorem for $k$-dimensional sets in $\mathbf {R}^{N}$ follows from the special case of $1$-dimensional sets in the plane, which was proved earlier by Besicovitch.
@article{10_1090_S0894_0347_98_00267_7,
author = {White, Brian},
title = {A new proof of {Federer{\textquoteright}s} structure theorem for \ensuremath{\mathit{k}}-dimensional subsets of {\ensuremath{\mathbf{R}}^{\ensuremath{\mathbf{N}}}}},
journal = {Journal of the American Mathematical Society},
pages = {693--701},
year = {1998},
volume = {11},
number = {3},
doi = {10.1090/S0894-0347-98-00267-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00267-7/}
}
TY - JOUR
AU - White, Brian
TI - A new proof of Federer’s structure theorem for 𝑘-dimensional subsets of 𝐑^{𝐍}
JO - Journal of the American Mathematical Society
PY - 1998
SP - 693
EP - 701
VL - 11
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00267-7/
DO - 10.1090/S0894-0347-98-00267-7
ID - 10_1090_S0894_0347_98_00267_7
ER -
%0 Journal Article
%A White, Brian
%T A new proof of Federer’s structure theorem for 𝑘-dimensional subsets of 𝐑^{𝐍}
%J Journal of the American Mathematical Society
%D 1998
%P 693-701
%V 11
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00267-7/
%R 10.1090/S0894-0347-98-00267-7
%F 10_1090_S0894_0347_98_00267_7
White, Brian. A new proof of Federer’s structure theorem for 𝑘-dimensional subsets of 𝐑^{𝐍}. Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 693-701. doi: 10.1090/S0894-0347-98-00267-7
[1] The geometry of fractal sets 1986
[2] , A characterization of Boolean algebras Ann. of Math. (2) 1939 609 610
[3] Geometric measure theory 1969
[4] Geometry of sets and measures in Euclidean spaces 1995
[5] Lectures on geometric measure theory 1983
Cité par Sources :