The Dolbeault complex in infinite dimensions I
Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 485-520

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we introduce certain basic notions concerning infinite dimensional complex manifolds, and prove that the Dolbeault cohomology groups of infinite dimensional projective spaces, with values in finite rank vector bundles, vanish. Some applications of such vanishing theorems are discussed; e.g., we classify vector bundles of finite rank over infinite dimensional projective spaces. Finally, we prove a sharp theorem on solving the inhomogeneous Cauchy–Riemann equations on affine spaces.
DOI : 10.1090/S0894-0347-98-00266-5

Lempert, László 1

1 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
@article{10_1090_S0894_0347_98_00266_5,
     author = {Lempert, L\~A{\textexclamdown}szl\~A{\textthreesuperior}},
     title = {The {Dolbeault} complex in infinite dimensions {I}},
     journal = {Journal of the American Mathematical Society},
     pages = {485--520},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00266-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00266-5/}
}
TY  - JOUR
AU  - Lempert, László
TI  - The Dolbeault complex in infinite dimensions I
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 485
EP  - 520
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00266-5/
DO  - 10.1090/S0894-0347-98-00266-5
ID  - 10_1090_S0894_0347_98_00266_5
ER  - 
%0 Journal Article
%A Lempert, László
%T The Dolbeault complex in infinite dimensions I
%J Journal of the American Mathematical Society
%D 1998
%P 485-520
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00266-5/
%R 10.1090/S0894-0347-98-00266-5
%F 10_1090_S0894_0347_98_00266_5
Lempert, László. The Dolbeault complex in infinite dimensions I. Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 485-520. doi: 10.1090/S0894-0347-98-00266-5

[1] Abraham, R., Marsden, J. E., Ratiu, T. Manifolds, tensor analysis, and applications 1988

[2] Bonic, Robert, Frampton, John Smooth functions on Banach manifolds J. Math. Mech. 1966 877 898

[3] Bowick, M. J., Rajeev, S. G. The holomorphic geometry of closed bosonic string theory and 𝐷𝑖𝑓𝑓𝑆¹/𝑆¹ Nuclear Phys. B 1987 348 384

[4] Brylinski, Jean-Luc Loop spaces, characteristic classes and geometric quantization 1993

[5] Barth, W., Van De Ven, A. A decomposability criterion for algebraic 2-bundles on projective spaces Invent. Math. 1974 91 106

[6] Colombeau, J.-F., Perrot, B. L’équation ∂̄ dans les ouverts pseudo-convexes des espaces DFN Bull. Soc. Math. France 1982 15 26

[7] Deville, Robert, Godefroy, Gilles, Zizler, Vã¡Clav Smoothness and renormings in Banach spaces 1993

[8] Dineen, Seã¡N Cousin’s first problem on certain locally convex topological vector spaces An. Acad. Brasil. Ci. 1976 11 12

[9] Dineen, Seã¡N Complex analysis in locally convex spaces 1981

[10] Ehrenpreis, Leon A new proof and an extension of Hartogs’ theorem Bull. Amer. Math. Soc. 1961 507 509

[11] Grauert, Hans Analytische Faserungen über holomorph-vollständigen Räumen Math. Ann. 1958 263 273

[12] Hamilton, Richard S. Deformation of complex structures on manifolds with boundary. I. The stable case J. Differential Geometry 1977 1 45

[13] Hamilton, Richard S. The inverse function theorem of Nash and Moser Bull. Amer. Math. Soc. (N.S.) 1982 65 222

[14] Henrich, Christopher J. The ∂̄ equation with polynomial growth on a Hilbert space Duke Math. J. 1973 279 306

[15] Hill, C. Denson What is the notion of a complex manifold with a smooth boundary? 1988 185 201

[16] Hã¶Rmander, Lars An introduction to complex analysis in several variables 1990

[17] Keller, Hans Heinrich Differential calculus in locally convex spaces 1974

[18] Kiremidjian, Garo K. A direct extension method for CR structures Math. Ann. 1979 1 19

[19] Kodaira, Kunihiko Complex manifolds and deformation of complex structures 1986

[20] Lebrun, Claude A Kähler structure on the space of string worldsheets Classical Quantum Gravity 1993

[21] Lempert, Lã¡Szlã³ Embeddings of three-dimensional Cauchy-Riemann manifolds Math. Ann. 1994 1 15

[22] Lempert, Lã¡Szlã³ Loop spaces as complex manifolds J. Differential Geom. 1993 519 543

[23] Lempert, Lã¡Szlã³ The Virasoro group as a complex manifold Math. Res. Lett. 1995 479 495

[24] Ligocka, Ewa Levi forms, differential forms of type (0,1) and pseudoconvexity in Banach spaces Ann. Polon. Math. 1976 63 69

[25] Mazet, Pierre Analytic sets in locally convex spaces 1984

[26] Michor, Peter W. Manifolds of differentiable mappings 1980

[27] Milnor, J. Remarks on infinite-dimensional Lie groups 1984 1007 1057

[28] Mujica, Jorge Complex analysis in Banach spaces 1986

[29] Meise, Reinhold, Vogt, Dietmar Counterexamples in holomorphic functions on nuclear Fréchet spaces Math. Z. 1983 167 177

[30] Venkatarayudu, T. The 7-15 problem Proc. Indian Acad. Sci., Sect. A. 1939 531

[31] Jaiswal, Anuradha, Singh, Bijendra On approximation problem in non-Archimedean quasi-normed spaces Math. Sem. Notes Kobe Univ. 1975 2

[32] Mac Lane, S. Locally small categories and the foundations of set theory 1961 25 43

[33] Skoda, Henri 𝑑′′-cohomologie à croissance lente dans Cⁿ Ann. Sci. École Norm. Sup. (4) 1971 97 120

[34] Toruå„Czyk, H. Smooth partitions of unity on some non-separable Banach spaces Studia Math. 1973 43 51

Cité par Sources :