Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_98_00264_1,
author = {Bowditch, Brian},
title = {A topological characterisation of hyperbolic groups},
journal = {Journal of the American Mathematical Society},
pages = {643--667},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {1998},
doi = {10.1090/S0894-0347-98-00264-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00264-1/}
}
TY - JOUR AU - Bowditch, Brian TI - A topological characterisation of hyperbolic groups JO - Journal of the American Mathematical Society PY - 1998 SP - 643 EP - 667 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00264-1/ DO - 10.1090/S0894-0347-98-00264-1 ID - 10_1090_S0894_0347_98_00264_1 ER -
%0 Journal Article %A Bowditch, Brian %T A topological characterisation of hyperbolic groups %J Journal of the American Mathematical Society %D 1998 %P 643-667 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00264-1/ %R 10.1090/S0894-0347-98-00264-1 %F 10_1090_S0894_0347_98_00264_1
Bowditch, Brian. A topological characterisation of hyperbolic groups. Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 643-667. doi: 10.1090/S0894-0347-98-00264-1
[1] , Limit points of Kleinian groups and finite sided fundamental polyhedra Acta Math. 1974 1 12
[2] Notes on Gromovâs hyperbolicity criterion for path-metric spaces 1991 64 167
[3] Geometrical finiteness with variable negative curvature Duke Math. J. 1995 229 274
[4] , Convergence groups and Seifert fibered 3-manifolds Invent. Math. 1994 441 456
[5] The accessibility of finitely presented groups Invent. Math. 1985 449 457
[6] Negatively curved groups have the convergence property. I Ann. Acad. Sci. Fenn. Ser. A I Math. 1995 333 348
[7] Convergence groups are Fuchsian groups Ann. of Math. (2) 1992 447 510
[8] , Discrete quasiconformal groups. I Proc. London Math. Soc. (3) 1987 331 358
[9] Sur les groupes hyperboliques dâaprès Mikhael Gromov 1990
[10] Hyperbolic groups 1987 75 263
[11] , Convergence groups with an invariant component pair Amer. J. Math. 1992 1049 1077
[12] Sur la géometrie symplectique de lâespace des géodésiques dâune variété à courbure négative Rev. Mat. Iberoamericana 1992 441 456
[13] Un groupe hyperbolique est déterminé par son bord J. London Math. Soc. (2) 1996 50 74
[14] Homeomorphic conjugates of Fuchsian groups J. Reine Angew. Math. 1988 1 54
[15] Convergence groups and Gromovâs metric hyperbolic spaces New Zealand J. Math. 1994 157 187
Cité par Sources :