A topological characterisation of hyperbolic groups
Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 643-667

Voir la notice de l'article provenant de la source American Mathematical Society

We characterise word hyperbolic groups as those groups which act properly discontinuously and cocompactly on the space of distinct triples of a compact metrisable space. This is, in turn, equivalent to a convergence group for which every point of the space is a conical limit point.
DOI : 10.1090/S0894-0347-98-00264-1

Bowditch, Brian 1

1 Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO17 1BJ, Great Britain
@article{10_1090_S0894_0347_98_00264_1,
     author = {Bowditch, Brian},
     title = {A topological characterisation of hyperbolic groups},
     journal = {Journal of the American Mathematical Society},
     pages = {643--667},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00264-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00264-1/}
}
TY  - JOUR
AU  - Bowditch, Brian
TI  - A topological characterisation of hyperbolic groups
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 643
EP  - 667
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00264-1/
DO  - 10.1090/S0894-0347-98-00264-1
ID  - 10_1090_S0894_0347_98_00264_1
ER  - 
%0 Journal Article
%A Bowditch, Brian
%T A topological characterisation of hyperbolic groups
%J Journal of the American Mathematical Society
%D 1998
%P 643-667
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00264-1/
%R 10.1090/S0894-0347-98-00264-1
%F 10_1090_S0894_0347_98_00264_1
Bowditch, Brian. A topological characterisation of hyperbolic groups. Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 643-667. doi: 10.1090/S0894-0347-98-00264-1

[1] Beardon, Alan F., Maskit, Bernard Limit points of Kleinian groups and finite sided fundamental polyhedra Acta Math. 1974 1 12

[2] Bowditch, B. H. Notes on Gromov’s hyperbolicity criterion for path-metric spaces 1991 64 167

[3] Bowditch, B. H. Geometrical finiteness with variable negative curvature Duke Math. J. 1995 229 274

[4] Casson, Andrew, Jungreis, Douglas Convergence groups and Seifert fibered 3-manifolds Invent. Math. 1994 441 456

[5] Dunwoody, M. J. The accessibility of finitely presented groups Invent. Math. 1985 449 457

[6] Freden, Eric M. Negatively curved groups have the convergence property. I Ann. Acad. Sci. Fenn. Ser. A I Math. 1995 333 348

[7] Gabai, David Convergence groups are Fuchsian groups Ann. of Math. (2) 1992 447 510

[8] Gehring, F. W., Martin, G. J. Discrete quasiconformal groups. I Proc. London Math. Soc. (3) 1987 331 358

[9] Sur les groupes hyperboliques d’après Mikhael Gromov 1990

[10] Gromov, M. Hyperbolic groups 1987 75 263

[11] Martin, Gaven J., Tukia, Pekka Convergence groups with an invariant component pair Amer. J. Math. 1992 1049 1077

[12] Otal, Jean-Pierre Sur la géometrie symplectique de l’espace des géodésiques d’une variété à courbure négative Rev. Mat. Iberoamericana 1992 441 456

[13] Paulin, Frã©Dã©Ric Un groupe hyperbolique est déterminé par son bord J. London Math. Soc. (2) 1996 50 74

[14] Tukia, Pekka Homeomorphic conjugates of Fuchsian groups J. Reine Angew. Math. 1988 1 54

[15] Tukia, Pekka Convergence groups and Gromov’s metric hyperbolic spaces New Zealand J. Math. 1994 157 187

Cité par Sources :