L-series with nonzero central critical value
Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 635-641

Voir la notice de l'article provenant de la source American Mathematical Society

Given a cusp form $f$ of even integral weight and its associated $L$-function $L(f,s)$, we expect that a positive proportion of the quadratic twists of $L$ will have nonzero central critical value. In this paper we give examples of weight two newforms whose associated $L$-functions have the property that a positive proportion of its quadratic twists have nonzero central critical value.
DOI : 10.1090/S0894-0347-98-00263-X

James, Kevin 1

1 Department of Mathematics, Pennsylvania State University, 218 McAllister Building, University Park, Pennsylvania 16802-6401
@article{10_1090_S0894_0347_98_00263_X,
     author = {James, Kevin},
     title = {L-series with nonzero central critical value},
     journal = {Journal of the American Mathematical Society},
     pages = {635--641},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00263-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00263-X/}
}
TY  - JOUR
AU  - James, Kevin
TI  - L-series with nonzero central critical value
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 635
EP  - 641
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00263-X/
DO  - 10.1090/S0894-0347-98-00263-X
ID  - 10_1090_S0894_0347_98_00263_X
ER  - 
%0 Journal Article
%A James, Kevin
%T L-series with nonzero central critical value
%J Journal of the American Mathematical Society
%D 1998
%P 635-641
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00263-X/
%R 10.1090/S0894-0347-98-00263-X
%F 10_1090_S0894_0347_98_00263_X
James, Kevin. L-series with nonzero central critical value. Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 635-641. doi: 10.1090/S0894-0347-98-00263-X

[1] Atkin, A. O. L., Lehner, J. Hecke operators on Γ₀(𝑚) Math. Ann. 1970 134 160

[2] Bump, Daniel, Friedberg, Solomon, Hoffstein, Jeffrey Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic 𝐿-functions and their derivatives Ann. of Math. (2) 1990 53 127

[3] Bump, Daniel, Friedberg, Solomon, Hoffstein, Jeffrey Nonvanishing theorems for 𝐿-functions of modular forms and their derivatives Invent. Math. 1990 543 618

[4] Davenport, H., Heilbronn, H. On the density of discriminants of cubic fields. II Proc. Roy. Soc. London Ser. A 1971 405 420

[5] Frey, G. On the Selmer group of twists of elliptic curves with 𝑄-rational torsion points Canad. J. Math. 1988 649 665

[6] Friedberg, Solomon, Hoffstein, Jeffrey Nonvanishing theorems for automorphic 𝐿-functions on 𝐺𝐿(2) Ann. of Math. (2) 1995 385 423

[7] Goldfeld, Dorian Conjectures on elliptic curves over quadratic fields 1979 108 118

[8] Heath-Brown, D. R. The size of Selmer groups for the congruent number problem Invent. Math. 1993 171 195

[9] Heath-Brown, D. R. The size of Selmer groups for the congruent number problem. II Invent. Math. 1994 331 370

[10] Iwaniec, Henryk On the order of vanishing of modular 𝐿-functions at the critical point Sém. Théor. Nombres Bordeaux (2) 1990 365 376

[11] Hopkins, Charles Rings with minimal condition for left ideals Ann. of Math. (2) 1939 712 730

[12] Kolyvagin, V. A. Finiteness of 𝐸(𝑄) and SH(𝐸,𝑄) for a subclass of Weil curves Izv. Akad. Nauk SSSR Ser. Mat. 1988

[13] Lehman, J. Larry Levels of positive definite ternary quadratic forms Math. Comp. 1992

[14] Li, Wen Ch’Ing Winnie Newforms and functional equations Math. Ann. 1975 285 315

[15] Lieman, Daniel B. Nonvanishing of 𝐿-series associated to cubic twists of elliptic curves Ann. of Math. (2) 1994 81 108

[16] Murty, M. Ram, Murty, V. Kumar Mean values of derivatives of modular 𝐿-series Ann. of Math. (2) 1991 447 475

[17] Nakagawa, Jin, Horie, Kuniaki Elliptic curves with no rational points Proc. Amer. Math. Soc. 1988 20 24

[18] Ono, Ken Rank zero quadratic twists of modular elliptic curves Compositio Math. 1996 293 304

[19] Shimura, Goro On modular forms of half integral weight Ann. of Math. (2) 1973 440 481

[20] Siegel, Carl Ludwig Gesammelte Abhandlungen. Bände I, II, III 1966

[21] Waldspurger, J.-L. Sur les coefficients de Fourier des formes modulaires de poids demi-entier J. Math. Pures Appl. (9) 1981 375 484

Cité par Sources :