Voir la notice de l'article provenant de la source American Mathematical Society
Angenent, Sigurd 1 ; Sapiro, Guillermo 2 ; Tannenbaum, Allen 
@article{10_1090_S0894_0347_98_00262_8,
author = {Angenent, Sigurd and Sapiro, Guillermo and Tannenbaum, Allen},
title = {On the affine heat equation for non-convex curves},
journal = {Journal of the American Mathematical Society},
pages = {601--634},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {1998},
doi = {10.1090/S0894-0347-98-00262-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00262-8/}
}
TY - JOUR AU - Angenent, Sigurd AU - Sapiro, Guillermo AU - Tannenbaum, Allen TI - On the affine heat equation for non-convex curves JO - Journal of the American Mathematical Society PY - 1998 SP - 601 EP - 634 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00262-8/ DO - 10.1090/S0894-0347-98-00262-8 ID - 10_1090_S0894_0347_98_00262_8 ER -
%0 Journal Article %A Angenent, Sigurd %A Sapiro, Guillermo %A Tannenbaum, Allen %T On the affine heat equation for non-convex curves %J Journal of the American Mathematical Society %D 1998 %P 601-634 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00262-8/ %R 10.1090/S0894-0347-98-00262-8 %F 10_1090_S0894_0347_98_00262_8
Angenent, Sigurd; Sapiro, Guillermo; Tannenbaum, Allen. On the affine heat equation for non-convex curves. Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 601-634. doi: 10.1090/S0894-0347-98-00262-8
[1] , , , Axiomes et équations fondamentales du traitement dâimages (analyse multiéchelle et EDP) C. R. Acad. Sci. Paris Sér. I Math. 1992 135 138
[2] , , , Axiomatisation et nouveaux opérateurs de la morphologie mathématique C. R. Acad. Sci. Paris Sér. I Math. 1992 265 268
[3] Contraction of convex hypersurfaces by their affine normal J. Differential Geom. 1996 207 230
[4] Parabolic equations for curves on surfaces. I. Curves with ð-integrable curvature Ann. of Math. (2) 1990 451 483
[5] Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions Ann. of Math. (2) 1991 171 215
[6] On the formation of singularities in the curve shortening flow J. Differential Geom. 1991 601 633
[7] The zero set of a solution of a parabolic equation J. Reine Angew. Math. 1988 79 96
[8] Affine differential geometry 1983
[9] , Invariant theory, old and new 1971
[10] , Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations J. Differential Equations 1989 160 190
[11] , The curve shortening flow 1987 15 59
[12] An isoperimetric inequality with applications to curve shortening Duke Math. J. 1983 1225 1229
[13] Curve shortening makes convex curves circular Invent. Math. 1984 357 364
[14] , The heat equation shrinking convex plane curves J. Differential Geom. 1986 69 96
[15] The heat equation shrinks embedded plane curves to round points J. Differential Geom. 1987 285 314
[16] Shortening embedded curves Ann. of Math. (2) 1989 71 111
[17] Differential geometry 1963
[18] , , On the evolution of curves via a function of curvature. I. The classical case J. Math. Anal. Appl. 1992 438 458
[19] Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1982 401 441
[20] Applications of Lie groups to differential equations 1993
[21] , , Classification and uniqueness of invariant geometric flows C. R. Acad. Sci. Paris Sér. I Math. 1994 339 344
[22] , , Invariant geometric evolutions of surfaces and volumetric smoothing SIAM J. Appl. Math. 1997 176 194
[23] , Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations J. Comput. Phys. 1988 12 49
[24] , Maximum principles in differential equations 1967
[25] , On affine plane curve evolution J. Funct. Anal. 1994 79 120
[26] , On invariant curve evolution and image analysis Indiana Univ. Math. J. 1993 985 1009
[27] A comprehensive introduction to differential geometry. Vol. I 1979
[28] Some recent developments in differential geometry Math. Intelligencer 1989 41 47
Cité par Sources :