Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves
Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 569-600

Voir la notice de l'article provenant de la source American Mathematical Society

Let $f : X \to Y$ be a surjective and projective morphism of smooth quasi-projective varieties over an algebraically closed field of characteristic zero with $\dim f = 1$. Let $E$ be a vector bundle of rank $r$ on $X$. In this paper, we would like to show that if $X_y$ is smooth and $E_y$ is semistable for some $y \in Y$, then $f_*\left ( 2rc_2(E) - (r-1)c_1(E)^2 \right )$ is weakly positive at $y$. We apply this result to obtain the following description of the cone of weakly positive $\mathbb {Q}$-Cartier divisors on the moduli space of stable curves. Let $\overline {\mathcal {M}}_g$ (resp. $\mathcal {M}_g$) be the moduli space of stable (resp. smooth) curves of genus $g \geq 2$. Let $\lambda$ be the Hodge class, and let the $\delta _i$’s ($i = 0, \ldots , [g/2]$) be the boundary classes. Then, a $\mathbb {Q}$-Cartier divisor $x \lambda + \sum _{i=0}^{[g/2]} y_i \delta _i$ on $\overline {\mathcal {M}}_g$ is weakly positive over $\mathcal {M}_g$ if and only if $x \geq 0$, $g x + (8g + 4) y_0 \geq 0$, and $i(g-i) x + (2g+1) y_i \geq 0$ for all $1 \leq i \leq [g/2]$.
DOI : 10.1090/S0894-0347-98-00261-6

Moriwaki, Atsushi 1

1 Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606-01, Japan
@article{10_1090_S0894_0347_98_00261_6,
     author = {Moriwaki, Atsushi},
     title = {Relative {Bogomolov\^a€™s} inequality and the cone of positive divisors on the moduli space of stable curves},
     journal = {Journal of the American Mathematical Society},
     pages = {569--600},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00261-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00261-6/}
}
TY  - JOUR
AU  - Moriwaki, Atsushi
TI  - Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 569
EP  - 600
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00261-6/
DO  - 10.1090/S0894-0347-98-00261-6
ID  - 10_1090_S0894_0347_98_00261_6
ER  - 
%0 Journal Article
%A Moriwaki, Atsushi
%T Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves
%J Journal of the American Mathematical Society
%D 1998
%P 569-600
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00261-6/
%R 10.1090/S0894-0347-98-00261-6
%F 10_1090_S0894_0347_98_00261_6
Moriwaki, Atsushi. Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves. Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 569-600. doi: 10.1090/S0894-0347-98-00261-6

[1] Bogomolov, F. A. Holomorphic tensors and vector bundles on projective manifolds Izv. Akad. Nauk SSSR Ser. Mat. 1978

[2] Bost, Jean-Benoã®T Semi-stability and heights of cycles Invent. Math. 1994 223 253

[3] Cornalba, Maurizio, Harris, Joe Divisor classes associated to families of stable varieties, with applications to the moduli space of curves Ann. Sci. École Norm. Sup. (4) 1988 455 475

[4] Deligne, P., Mumford, D. The irreducibility of the space of curves of given genus Inst. Hautes Études Sci. Publ. Math. 1969 75 109

[5] Fulton, William Intersection theory 1984

[6] Gieseker, David Stable vector bundles and the Frobenius morphism Ann. Sci. École Norm. Sup. (4) 1973 95 101

[7] Gieseker, D. On a theorem of Bogomolov on Chern classes of stable bundles Amer. J. Math. 1979 77 85

[8] Hartshorne, Robin Ample vector bundles on curves Nagoya Math. J. 1971 73 89

[9] Jouanolou, Jean-Pierre Théorèmes de Bertini et applications 1983

[10] Knudsen, Finn Faye, Mumford, David The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div” Math. Scand. 1976 19 55

[11] Maruyama, Masaki The theorem of Grauert-Mülich-Spindler Math. Ann. 1981 317 333

[12] Miyaoka, Yoichi The Chern classes and Kodaira dimension of a minimal variety 1987 449 476

[13] Moriwaki, Atsushi Arithmetic Bogomolov-Gieseker’s inequality Amer. J. Math. 1995 1325 1347

[14] Moriwaki, Atsushi A sharp slope inequality for general stable fibrations of curves J. Reine Angew. Math. 1996 177 195

[15] Mumford, David Stability of projective varieties Enseign. Math. (2) 1977 39 110

[16] Paranjape, Kapil, Ramanan, S. On the canonical ring of a curve 1988 503 516

[17] Xiao, Gang Fibered algebraic surfaces with low slope Math. Ann. 1987 449 466

[18] Zhang, Shouwu Admissible pairing on a curve Invent. Math. 1993 171 193

Cité par Sources :