Complex earthquakes and Teichmüller theory
Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 283-320

Voir la notice de l'article provenant de la source American Mathematical Society

It is known that any two points in Teichmüller space are joined by an earthquake path. In this paper we show any earthquake path $\mathbb R \rightarrow T(S)$ extends to a proper holomorphic mapping of a simply-connected domain $D$ into Teichmüller space, where $\mathbb R \subset D \subset \mathbb C$. These complex earthquakes relate Weil-Petersson geometry, projective structures, pleated surfaces and quasifuchsian groups. Using complex earthquakes, we prove grafting is a homeomorphism for all 1-dimensional Teichmüller spaces, and we construct bending coordinates on Bers slices and their generalizations. In the appendix we use projective surfaces to show the closure of quasifuchsian space is not a topological manifold.
@article{10_1090_S0894_0347_98_00259_8,
     author = {McMullen, Curtis},
     title = {Complex earthquakes and {Teichm\~A{\textonequarter}ller} theory},
     journal = {Journal of the American Mathematical Society},
     pages = {283--320},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00259-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00259-8/}
}
TY  - JOUR
AU  - McMullen, Curtis
TI  - Complex earthquakes and Teichmüller theory
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 283
EP  - 320
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00259-8/
DO  - 10.1090/S0894-0347-98-00259-8
ID  - 10_1090_S0894_0347_98_00259_8
ER  - 
%0 Journal Article
%A McMullen, Curtis
%T Complex earthquakes and Teichmüller theory
%J Journal of the American Mathematical Society
%D 1998
%P 283-320
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00259-8/
%R 10.1090/S0894-0347-98-00259-8
%F 10_1090_S0894_0347_98_00259_8
McMullen, Curtis. Complex earthquakes and Teichmüller theory. Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 283-320. doi: 10.1090/S0894-0347-98-00259-8

[1] Anderson, James W., Canary, Richard D. Algebraic limits of Kleinian groups which rearrange the pages of a book Invent. Math. 1996 205 214

[2] Bers, Lipman Simultaneous uniformization Bull. Amer. Math. Soc. 1960 94 97

[3] Bers, Lipman On boundaries of Teichmüller spaces and on Kleinian groups. I Ann. of Math. (2) 1970 570 600

[4] Bers, Lipman Holomorphic families of isomorphisms of Möbius groups J. Math. Kyoto Univ. 1986 73 76

[5] Bers, Lipman, Ehrenpreis, Leon Holomorphic convexity of Teichmüller spaces Bull. Amer. Math. Soc. 1964 761 764

[6] Bonahon, Francis Bouts des variétés hyperboliques de dimension 3 Ann. of Math. (2) 1986 71 158

[7] Bonahon, Francis The geometry of Teichmüller space via geodesic currents Invent. Math. 1988 139 162

[8] Earle, Clifford J. On variation of projective structures 1981 87 99

[9] Epstein, D. B. A., Marden, A. Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces 1987 113 253

[10] Faltings, Gerd Real projective structures on Riemann surfaces Compositio Math. 1983 223 269

[11] Gardiner, Frederick P. Teichmüller theory and quadratic differentials 1987

[12] Goldman, William M. Projective structures with Fuchsian holonomy J. Differential Geom. 1987 297 326

[13] Gray, J. J. Fuchs and the theory of differential equations Bull. Amer. Math. Soc. (N.S.) 1984 1 26

[14] Gunning, R. C. Lectures on vector bundles over Riemann surfaces 1967

[15] Gunning, R. C. Affine and projective structures on Riemann surfaces 1981 225 244

[16] Hejhal, Dennis A. Monodromy groups and linearly polymorphic functions Acta Math. 1975 1 55

[17] Hubbard, John H. The monodromy of projective structures 1981 257 275

[18] Imayoshi, Y., Taniguchi, M. An introduction to Teichmüller spaces 1992

[19] Kamishima, Yoshinobu, Tan, Ser P. Deformation spaces on geometric structures 1992 263 299

[20] Keen, Linda, Series, Caroline Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori Topology 1993 719 749

[21] Kerckhoff, Steven P. The Nielsen realization problem Ann. of Math. (2) 1983 235 265

[22] Kerckhoff, Steven P. Earthquakes are analytic Comment. Math. Helv. 1985 17 30

[23] Kerckhoff, Steven P., Thurston, William P. Noncontinuity of the action of the modular group at Bers’ boundary of Teichmüller space Invent. Math. 1990 25 47

[24] Kra, Irwin Deformation spaces 1974 48 70

[25] Lehto, Olli Univalent functions and Teichmüller spaces 1987

[26] Maskit, Bernard On a class of Kleinian groups Ann. Acad. Sci. Fenn. Ser. A I 1969 8

[27] Matsumoto, Shigenori Foundations of flat conformal structure 1992 167 261

[28] Mcmullen, C. Iteration on Teichmüller space Invent. Math. 1990 425 454

[29] Mcmullen, Curtis T. Renormalization and 3-manifolds which fiber over the circle 1996

[30] Nag, Subhashis The complex analytic theory of Teichmüller spaces 1988

[31] Otal, Jean-Pierre Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3 Astérisque 1996

[32] Parker, John R., Series, Caroline Bending formulae for convex hull boundaries J. Anal. Math. 1995 165 198

[33] Shiga, Hiroshige On analytic and geometric properties of Teichmüller spaces J. Math. Kyoto Univ. 1984 441 452

[34] Sullivan, Dennis Quasiconformal homeomorphisms and dynamics. II. Structural stability implies hyperbolicity for Kleinian groups Acta Math. 1985 243 260

[35] Thurston, William P. Earthquakes in two-dimensional hyperbolic geometry 1986 91 112

[36] Thurston, William P. Three-dimensional geometry and topology. Vol. 1 1997

[37] Wolf, Michael The Teichmüller theory of harmonic maps J. Differential Geom. 1989 449 479

[38] Wolpert, Scott An elementary formula for the Fenchel-Nielsen twist Comment. Math. Helv. 1981 132 135

[39] Wolpert, Scott The Fenchel-Nielsen deformation Ann. of Math. (2) 1982 501 528

[40] Wolpert, Scott On the Weil-Petersson geometry of the moduli space of curves Amer. J. Math. 1985 969 997

[41] Wolpert, Scott A. Geodesic length functions and the Nielsen problem J. Differential Geom. 1987 275 296

Cité par Sources :