The 𝐿² ∂̄-method, weak Lefschetz theorems, and the topology of Kähler manifolds
Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 375-396

Voir la notice de l'article provenant de la source American Mathematical Society

A new approach to Nori’s weak Lefschetz theorem is described. The new approach, which involves the $\bar \partial$-method, avoids moving arguments and gives much stronger results. In particular, it is proved that if $X$ and $Y$ are connected smooth projective varieties of positive dimension and $f : Y \rightarrow X$ is a holomorphic immersion with ample normal bundle, then the image of $\pi _1(Y)$ in $\pi _1(X)$ is of finite index. This result is obtained as a consequence of a direct generalization of Nori’s theorem. The second part concerns a new approach to the theorem of Burns which states that a quotient of the unit ball in $\Bbb C ^n$ ($n\geq 3$) by a discrete group of automorphisms which has a strongly pseudoconvex boundary component has only finitely many ends. The following generalization is obtained. If a complete Hermitian manifold $X$ of dimension $n\geq 3$ has a strongly pseudoconvex end $E$ and $\text {Ricci} (X) \leq -C$ for some positive constant $C$, then, away from $E$, $X$ has finite volume.
DOI : 10.1090/S0894-0347-98-00257-4

Napier, Terrence 1 ; Ramachandran, Mohan 2

1 Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015
2 Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14214
@article{10_1090_S0894_0347_98_00257_4,
     author = {Napier, Terrence and Ramachandran, Mohan},
     title = {The {{\dh}{\textquestiondown}\^A{\texttwosuperior}} {\^aˆ‚\`I„-method,} weak {Lefschetz} theorems, and the topology of {K\~A{\textcurrency}hler} manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {375--396},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00257-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00257-4/}
}
TY  - JOUR
AU  - Napier, Terrence
AU  - Ramachandran, Mohan
TI  - The 𝐿² ∂̄-method, weak Lefschetz theorems, and the topology of Kähler manifolds
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 375
EP  - 396
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00257-4/
DO  - 10.1090/S0894-0347-98-00257-4
ID  - 10_1090_S0894_0347_98_00257_4
ER  - 
%0 Journal Article
%A Napier, Terrence
%A Ramachandran, Mohan
%T The 𝐿² ∂̄-method, weak Lefschetz theorems, and the topology of Kähler manifolds
%J Journal of the American Mathematical Society
%D 1998
%P 375-396
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00257-4/
%R 10.1090/S0894-0347-98-00257-4
%F 10_1090_S0894_0347_98_00257_4
Napier, Terrence; Ramachandran, Mohan. The 𝐿² ∂̄-method, weak Lefschetz theorems, and the topology of Kähler manifolds. Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 375-396. doi: 10.1090/S0894-0347-98-00257-4

[1] Andreotti, Aldo Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves Bull. Soc. Math. France 1963 1 38

[2] Andreotti, Aldo, Grauert, Hans Théorème de finitude pour la cohomologie des espaces complexes Bull. Soc. Math. France 1962 193 259

[3] Andreotti, Aldo, Vesentini, Edoardo Carleman estimates for the Laplace-Beltrami equation on complex manifolds Inst. Hautes Études Sci. Publ. Math. 1965 81 130

[4] Ballmann, Werner, Gromov, Mikhael, Schroeder, Viktor Manifolds of nonpositive curvature 1985

[5] BäƒNicäƒ, Constantin, StäƒNäƒÅŸIläƒ, Octavian Algebraic methods in the global theory of complex spaces 1976 296

[6] Campana, Frã©Dã©Ric Remarques sur le revêtement universel des variétés kählériennes compactes Bull. Soc. Math. France 1994 255 284

[7] Demailly, Jean-Pierre Estimations 𝐿² pour l’opérateur ∂̄ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète Ann. Sci. École Norm. Sup. (4) 1982 457 511

[8] Demailly, Jean-Pierre Champs magnétiques et inégalités de Morse pour la 𝑑”-cohomologie Ann. Inst. Fourier (Grenoble) 1985 189 229

[9] Fulton, William On the topology of algebraic varieties 1987 15 46

[10] Fulton, William, Lazarsfeld, Robert Connectivity and its applications in algebraic geometry 1981 26 92

[11] Fulton, William, Lazarsfeld, Robert Positivity and excess intersection 1982 97 105

[12] Perlis, Sam Maximal orders in rational cyclic algebras of composite degree Trans. Amer. Math. Soc. 1939 82 96

[13] Grauert, Hans, Riemenschneider, Oswald Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen Invent. Math. 1970 263 292

[14] Grothendieck, Alexander Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (𝑆𝐺𝐴 2) 1968

[15] Hartshorne, Robin Ample subvarieties of algebraic varieties 1970

[16] Hironaka, Heisuke, Matsumura, Hideyuki Formal functions and formal embeddings J. Math. Soc. Japan 1968 52 82

[17] Hã¶Rmander, Lars An introduction to complex analysis in several variables 1973

[18] Kollã¡R, Jã¡Nos Shafarevich maps and automorphic forms 1995

[19] Lempert, Lã¡Szlã³ Algebraic approximations in analytic geometry Invent. Math. 1995 335 353

[20] Nadel, Alan, Tsuji, Hajime Compactification of complete Kähler manifolds of negative Ricci curvature J. Differential Geom. 1988 503 512

[21] Nakano, Shigeo Vanishing theorems for weakly 1-complete manifolds. II Publ. Res. Inst. Math. Sci. 1974/75 101 110

[22] Napier, T., Ramachandran, M. Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems Geom. Funct. Anal. 1995 809 851

[23] Nori, Madhav V. Zariski’s conjecture and related problems Ann. Sci. École Norm. Sup. (4) 1983 305 344

[24] Okonek, Christian Concavity, convexity and complements in complex spaces 1986 104 126

[25] Rossi, H. Attaching analytic spaces to an analytic space along a pseudoconcave boundary 1965 242 256

[26] Sakai, F. Kodaira dimensions of complements of divisors 1977 239 257

[27] Siu, Yum Tong, Yau, Shing Tung Compactification of negatively curved complete Kähler manifolds of finite volume 1982 363 380

[28] Skoda, Henri Morphismes surjectifs et fibrés linéaires semi-positifs 1978 290 324

[29] Sommese, Andrew John Submanifolds of Abelian varieties Math. Ann. 1978 229 256

[30] Takayama, Shigeharu A differential geometric property of big line bundles Tohoku Math. J. (2) 1994 281 291

Cité par Sources :