Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces
Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 321-361

Voir la notice de l'article provenant de la source American Mathematical Society

We compute the quasi-isometry group of an irreducible nonuniform lattice in a semisimple Lie group with finite center and no rank one factors, and show that any two such lattices are quasi-isometric if and only if they are commensurable up to conjugation.
DOI : 10.1090/S0894-0347-98-00256-2

Eskin, Alex 1

1 Department of Mathematics, University of Chicago, 5734 S.University Ave, Chicago, Illinois 60637
@article{10_1090_S0894_0347_98_00256_2,
     author = {Eskin, Alex},
     title = {Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {321--361},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00256-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00256-2/}
}
TY  - JOUR
AU  - Eskin, Alex
TI  - Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 321
EP  - 361
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00256-2/
DO  - 10.1090/S0894-0347-98-00256-2
ID  - 10_1090_S0894_0347_98_00256_2
ER  - 
%0 Journal Article
%A Eskin, Alex
%T Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces
%J Journal of the American Mathematical Society
%D 1998
%P 321-361
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00256-2/
%R 10.1090/S0894-0347-98-00256-2
%F 10_1090_S0894_0347_98_00256_2
Eskin, Alex. Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces. Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 321-361. doi: 10.1090/S0894-0347-98-00256-2

[1] Brown, Kenneth S. Buildings 1989

[2] Cannon, J. W., Cooper, Daryl A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three Trans. Amer. Math. Soc. 1992 419 431

[3] Mostow, G. D. Strong rigidity of locally symmetric spaces 1973

[4] Pansu, Pierre Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un Ann. of Math. (2) 1989 1 60

[5] Schwartz, Richard Evan The quasi-isometry classification of rank one lattices Inst. Hautes Études Sci. Publ. Math. 1995

[6] Schwartz, Richard Evan Quasi-isometric rigidity and Diophantine approximation Acta Math. 1996 75 112

[7] Tits, Jacques Buildings of spherical type and finite BN-pairs 1974

[8] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

Cité par Sources :