Generic lattice ideals
Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 363-373

Voir la notice de l'article provenant de la source American Mathematical Society

A concept of genericity is introduced for lattice ideals (and hence for ideals defining toric varieties) which ensures nicely structured homological behavior. For a generic lattice ideal we construct its minimal free resolution and we show that it is induced from the Scarf resolution of any reverse lexicographic initial ideal.
DOI : 10.1090/S0894-0347-98-00255-0

Peeva, Irena 1 ; Sturmfels, Bernd 2

1 Department of Mathematics, Massachussetts Institute of Technology, Cambridge, Massachusetts 02139
2 Department of Mathematics, University of California, Berkeley, California 94720
@article{10_1090_S0894_0347_98_00255_0,
     author = {Peeva, Irena and Sturmfels, Bernd},
     title = {Generic lattice ideals},
     journal = {Journal of the American Mathematical Society},
     pages = {363--373},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00255-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00255-0/}
}
TY  - JOUR
AU  - Peeva, Irena
AU  - Sturmfels, Bernd
TI  - Generic lattice ideals
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 363
EP  - 373
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00255-0/
DO  - 10.1090/S0894-0347-98-00255-0
ID  - 10_1090_S0894_0347_98_00255_0
ER  - 
%0 Journal Article
%A Peeva, Irena
%A Sturmfels, Bernd
%T Generic lattice ideals
%J Journal of the American Mathematical Society
%D 1998
%P 363-373
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00255-0/
%R 10.1090/S0894-0347-98-00255-0
%F 10_1090_S0894_0347_98_00255_0
Peeva, Irena; Sturmfels, Bernd. Generic lattice ideals. Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 363-373. doi: 10.1090/S0894-0347-98-00255-0

[1] Bã¡Rã¡Ny, Imre, Howe, Roger, Scarf, Herbert E. The complex of maximal lattice free simplices Math. Programming 1994 273 281

[2] Bã¡Rã¡Ny, I., Scarf, H. E., Shallcross, D. The topological structure of maximal lattice free convex bodies: the general case 1995 244 251

[3] Stanley, Richard P. Combinatorics and commutative algebra 1983

[4] Sturmfels, Bernd Gröbner bases and convex polytopes 1996

Cité par Sources :