Voir la notice de l'article provenant de la source American Mathematical Society
Grieser, Daniel 1 ; Jerison, David 2
@article{10_1090_S0894_0347_98_00254_9,
author = {Grieser, Daniel and Jerison, David},
title = {The size of the first eigenfunction of a convex planar domain},
journal = {Journal of the American Mathematical Society},
pages = {41--72},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1998},
doi = {10.1090/S0894-0347-98-00254-9},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00254-9/}
}
TY - JOUR AU - Grieser, Daniel AU - Jerison, David TI - The size of the first eigenfunction of a convex planar domain JO - Journal of the American Mathematical Society PY - 1998 SP - 41 EP - 72 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00254-9/ DO - 10.1090/S0894-0347-98-00254-9 ID - 10_1090_S0894_0347_98_00254_9 ER -
%0 Journal Article %A Grieser, Daniel %A Jerison, David %T The size of the first eigenfunction of a convex planar domain %J Journal of the American Mathematical Society %D 1998 %P 41-72 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00254-9/ %R 10.1090/S0894-0347-98-00254-9 %F 10_1090_S0894_0347_98_00254_9
Grieser, Daniel; Jerison, David. The size of the first eigenfunction of a convex planar domain. Journal of the American Mathematical Society, Tome 11 (1998) no. 1, pp. 41-72. doi: 10.1090/S0894-0347-98-00254-9
[1] Hitting probabilities of killed Brownian motion: a study on geometric regularity Ann. Sci. Ãcole Norm. Sup. (4) 1984 451 467
[2] Greenian potentials and concavity Math. Ann. 1985 155 160
[3] , On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation J. Functional Analysis 1976 366 389
[4] On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633
[5] , Asymptotics of the first nodal line of a convex domain Invent. Math. 1996 197 219
[6] The diameter of the first nodal line of a convex domain Ann. of Math. (2) 1995 1 33
[7] , The â-path distribution of the lifetime of conditioned Brownian motion for nonsmooth domains Probab. Theory Related Fields 1989 615 623
[8] On the ground state eigenfunction of a convex domain in Euclidean space Potential Anal. 1996 103 108
[9] , Maximum principles in differential equations 1984
[10] Spectral gaps and rates to equilibrium for diffusions in convex domains Michigan Math. J. 1996 141 157
Cité par Sources :