The size of the first eigenfunction of a convex planar domain
Journal of the American Mathematical Society, Tome 11 (1998) no. 1, pp. 41-72

Voir la notice de l'article provenant de la source American Mathematical Society

This paper estimates the size of the first Dirichlet eigenfunction of a convex planar domain. The eigenfunction is shown to be well-approximated, uniformly for all convex domains, by the first Dirichlet eigenfunction of a naturally associated ordinary differential (Schrödinger) operator. In particular, the place where the eigenfunction attains its maximum is located to within a distance comparable to the inradius.
DOI : 10.1090/S0894-0347-98-00254-9

Grieser, Daniel 1 ; Jerison, David 2

1 Humboldt Universität Berlin, Institut für Mathematik, Unter den Linden 6, 10099 Berlin, Germany
2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
@article{10_1090_S0894_0347_98_00254_9,
     author = {Grieser, Daniel and Jerison, David},
     title = {The size of the first eigenfunction of a convex planar domain},
     journal = {Journal of the American Mathematical Society},
     pages = {41--72},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00254-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00254-9/}
}
TY  - JOUR
AU  - Grieser, Daniel
AU  - Jerison, David
TI  - The size of the first eigenfunction of a convex planar domain
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 41
EP  - 72
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00254-9/
DO  - 10.1090/S0894-0347-98-00254-9
ID  - 10_1090_S0894_0347_98_00254_9
ER  - 
%0 Journal Article
%A Grieser, Daniel
%A Jerison, David
%T The size of the first eigenfunction of a convex planar domain
%J Journal of the American Mathematical Society
%D 1998
%P 41-72
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00254-9/
%R 10.1090/S0894-0347-98-00254-9
%F 10_1090_S0894_0347_98_00254_9
Grieser, Daniel; Jerison, David. The size of the first eigenfunction of a convex planar domain. Journal of the American Mathematical Society, Tome 11 (1998) no. 1, pp. 41-72. doi: 10.1090/S0894-0347-98-00254-9

[1] Borell, Christer Hitting probabilities of killed Brownian motion: a study on geometric regularity Ann. Sci. École Norm. Sup. (4) 1984 451 467

[2] Borell, Christer Greenian potentials and concavity Math. Ann. 1985 155 160

[3] Brascamp, Herm Jan, Lieb, Elliott H. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation J. Functional Analysis 1976 366 389

[4] Nakayama, Tadasi On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633

[5] Grieser, Daniel, Jerison, David Asymptotics of the first nodal line of a convex domain Invent. Math. 1996 197 219

[6] Jerison, David The diameter of the first nodal line of a convex domain Ann. of Math. (2) 1995 1 33

[7] Kenig, Carlos E., Pipher, Jill The ℎ-path distribution of the lifetime of conditioned Brownian motion for nonsmooth domains Probab. Theory Related Fields 1989 615 623

[8] Krã¶Ger, Pawel On the ground state eigenfunction of a convex domain in Euclidean space Potential Anal. 1996 103 108

[9] Protter, Murray H., Weinberger, Hans F. Maximum principles in differential equations 1984

[10] Smits, Robert G. Spectral gaps and rates to equilibrium for diffusions in convex domains Michigan Math. J. 1996 141 157

Cité par Sources :