On Hitchin’s connection
Journal of the American Mathematical Society, Tome 11 (1998) no. 1, pp. 189-228 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

The aim of the paper is to give an explicit expression for Hitchin’s connection in the case of stable rank 2 bundles on genus 2 curves. Some general theory (in the algebraic geometric setting) concerning heat operators is developed. In particular the notion of compatibility of a heat operator with respect to a closed subvariety is introduced. This is used to compare the heat operator in the nonabelian rank 2 genus 2 case to the abelian heat operator (on theta functions) for abelian surfaces. This relation allows one to perform the computation; the resulting differential equations are similar to the Knizhnik-Zalmolodshikov equations.
DOI : 10.1090/S0894-0347-98-00252-5

van Geemen, Bert  1   ; de Jong, Aise Johan  2

1 Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
2 Department of Mathematics, Princeton University, Fine Hall – Washington Road, Princeton, New Jersey 08544-1000
@article{10_1090_S0894_0347_98_00252_5,
     author = {van Geemen, Bert and de Jong, Aise Johan},
     title = {On {Hitchin{\textquoteright}s} connection},
     journal = {Journal of the American Mathematical Society},
     pages = {189--228},
     year = {1998},
     volume = {11},
     number = {1},
     doi = {10.1090/S0894-0347-98-00252-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00252-5/}
}
TY  - JOUR
AU  - van Geemen, Bert
AU  - de Jong, Aise Johan
TI  - On Hitchin’s connection
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 189
EP  - 228
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00252-5/
DO  - 10.1090/S0894-0347-98-00252-5
ID  - 10_1090_S0894_0347_98_00252_5
ER  - 
%0 Journal Article
%A van Geemen, Bert
%A de Jong, Aise Johan
%T On Hitchin’s connection
%J Journal of the American Mathematical Society
%D 1998
%P 189-228
%V 11
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00252-5/
%R 10.1090/S0894-0347-98-00252-5
%F 10_1090_S0894_0347_98_00252_5
van Geemen, Bert; de Jong, Aise Johan. On Hitchin’s connection. Journal of the American Mathematical Society, Tome 11 (1998) no. 1, pp. 189-228. doi: 10.1090/S0894-0347-98-00252-5

[1] Brylinski, Jean-Luc, Mclaughlin, Dennis Holomorphic quantization and unitary representations of the Teichmüller group 1994 21 64

[2] Deligne, Pierre Équations différentielles à points singuliers réguliers 1970

[3] Dolgachev, Igor, Ortland, David Point sets in projective spaces and theta functions Astérisque 1988

[4] Desale, U. V., Ramanan, S. Classification of vector bundles of rank 2 on hyperelliptic curves Invent. Math. 1976/77 161 185

[5] Fulton, William, Harris, Joe Representation theory 1991

[6] Van Geemen, Bert Schottky-Jung relations and vectorbundles on hyperelliptic curves Math. Ann. 1988 431 449

[7] Harris, Joe Algebraic geometry 1992

[8] Hitchin, N. J. Flat connections and geometric quantization Comm. Math. Phys. 1990 347 380

[9] Kassel, Christian Quantum groups 1995

[10] Kohno, Toshitake Linear representations of braid groups and classical Yang-Baxter equations 1988 339 363

[11] Kohno, Toshitake Topological invariants for 3-manifolds using representations of mapping class groups. I Topology 1992 203 230

[12] Mumford, David Tata lectures on theta. II 1984

[13] Moore, Gregory, Seiberg, Nathan Classical and quantum conformal field theory Comm. Math. Phys. 1989 177 254

[14] Narasimhan, M. S., Ramanan, S. Moduli of vector bundles on a compact Riemann surface Ann. of Math. (2) 1969 14 51

[15] Simpson, Carlos T. Higgs bundles and local systems Inst. Hautes Études Sci. Publ. Math. 1992 5 95

[16] Welters, Gerald E. Polarized abelian varieties and the heat equations Compositio Math. 1983 173 194

[17] Wright, Gretchen The Reshetikhin-Turaev representation of the mapping class group J. Knot Theory Ramifications 1994 547 574

Cité par Sources :