Asymptotic properties of Banach spaces under renormings
Journal of the American Mathematical Society, Tome 11 (1998) no. 1, pp. 175-188

Voir la notice de l'article provenant de la source American Mathematical Society

It is shown that a separable Banach space $X$ can be given an equivalent norm $||| \cdot |||$ with the following properties: If $(x_{n})\subseteq X$ is relatively weakly compact and $\lim _{m\to \infty } \lim _{n\to \infty } ||| x_{m}+x_{n}||| = 2\lim _{m\to \infty } ||| x_{m}|||$, then $(x_{n})$ converges in norm. This yields a characterization of reflexivity once proposed by V.D. Milman. In addition it is shown that some spreading model of a sequence in $(X,||| \cdot ||| )$ is 1-equivalent to the unit vector basis of $\ell _{1}$ (respectively, $c_{0}$) implies that $X$ contains an isomorph of $\ell _{1}$ (respectively, $c_{0}$).
DOI : 10.1090/S0894-0347-98-00251-3

Odell, E. 1 ; Schlumprecht, Th. 2

1 Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712-1082
2 Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
@article{10_1090_S0894_0347_98_00251_3,
     author = {Odell, E. and Schlumprecht, Th.},
     title = {Asymptotic properties of {Banach} spaces under renormings},
     journal = {Journal of the American Mathematical Society},
     pages = {175--188},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00251-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00251-3/}
}
TY  - JOUR
AU  - Odell, E.
AU  - Schlumprecht, Th.
TI  - Asymptotic properties of Banach spaces under renormings
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 175
EP  - 188
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00251-3/
DO  - 10.1090/S0894-0347-98-00251-3
ID  - 10_1090_S0894_0347_98_00251_3
ER  - 
%0 Journal Article
%A Odell, E.
%A Schlumprecht, Th.
%T Asymptotic properties of Banach spaces under renormings
%J Journal of the American Mathematical Society
%D 1998
%P 175-188
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00251-3/
%R 10.1090/S0894-0347-98-00251-3
%F 10_1090_S0894_0347_98_00251_3
Odell, E.; Schlumprecht, Th. Asymptotic properties of Banach spaces under renormings. Journal of the American Mathematical Society, Tome 11 (1998) no. 1, pp. 175-188. doi: 10.1090/S0894-0347-98-00251-3

[1] Beauzamy, B., Laprestã©, J.-T. Modèles étalés des espaces de Banach 1984

[2] Bellenot, Steven F. Somewhat quasireflexive Banach spaces Ark. Mat. 1984 175 183

[3] Bessaga, C., Peå‚Czyå„Ski, A. On bases and unconditional convergence of series in Banach spaces Studia Math. 1958 151 164

[4] Brunel, A. Espaces associés à une suite bornée dans un espace de Banach 1974

[5] Brunel, Antoine, Sucheston, Louis On 𝐵-convex Banach spaces Math. Systems Theory 1974 294 299

[6] Casazza, Peter G., Shura, Thaddeus J. Tsirel′son’s space 1989

[7] Day, Mahlon M. Normed linear spaces 1973

[8] Dickson, Leonard Eugene New First Course in the Theory of Equations 1939

[9] Deville, Robert, Godefroy, Gilles, Zizler, Vã¡Clav Smoothness and renormings in Banach spaces 1993

[10] Maclane, Saunders Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45

[11] Figiel, T., Johnson, W. B. A uniformly convex Banach space which contains no 𝑙_{𝑝} Compositio Math. 1974 179 190

[12] Gowers, W. T. A Banach space not containing 𝑐₀,𝑙₁ or a reflexive subspace Trans. Amer. Math. Soc. 1994 407 420

[13] Gowers, W. T., Maurey, B. The unconditional basic sequence problem J. Amer. Math. Soc. 1993 851 874

[14] Haydon, Richard, Maurey, Bernard On Banach spaces with strongly separable types J. London Math. Soc. (2) 1986 484 498

[15] James, Robert C. Reflexivity and the sup of linear functionals Israel J. Math. 1972

[16] James, Robert C. Uniformly non-square Banach spaces Ann. of Math. (2) 1964 542 550

[17] Hopkins, Charles Rings with minimal condition for left ideals Ann. of Math. (2) 1939 712 730

[18] Krivine, J.-L., Maurey, B. Espaces de Banach stables Israel J. Math. 1981 273 295

[19] Lindenstrauss, Joram, Tzafriri, Lior Classical Banach spaces. I 1977

[20] Maurey, B., Milman, V. D., Tomczak-Jaegermann, N. Asymptotic infinite-dimensional theory of Banach spaces 1995 149 175

[21] Milman, V. D. Geometric theory of Banach spaces. II. Geometry of the unit ball Uspehi Mat. Nauk 1971 73 149

[22] Milman, Vitali D., Tomczak-Jaegermann, Nicole Asymptotic 𝑙_{𝑝} spaces and bounded distortions 1993 173 195

[23] Odell, E. Applications of Ramsey theorems to Banach space theory 1980 379 404

[24] Rosenthal, Haskell A characterization of Banach spaces containing 𝑐₀ J. Amer. Math. Soc. 1994 707 748

[25] Rosenthal, Haskell P. A characterization of Banach spaces containing 𝑙¹ Proc. Nat. Acad. Sci. U.S.A. 1974 2411 2413

Cité par Sources :