Lattice paths and Kazhdan-Lusztig polynomials
Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 229-259

Voir la notice de l'article provenant de la source American Mathematical Society

The purpose of this paper is to present a new non-recursive combinatorial formula for the Kazhdan-Lusztig polynomials of a Coxeter group $W$. More precisely, we show that each directed path in the Bruhat graph of $W$ has a naturally associated set of lattice paths with the property that the Kazhdan-Lusztig polynomial of $u,v$ is the sum, over all the lattice paths associated to all the paths going from $u$ to $v$, of $(-1)^{\Gamma _{\ge 0}+d_+(\Gamma )}q^{(l(v)-l(u)+\Gamma (l(\Gamma )))/2}$ where $\Gamma _{\ge 0}, d_+(\Gamma )$, and $\Gamma (l(\Gamma ))$ are three natural statistics on the lattice path.
DOI : 10.1090/S0894-0347-98-00249-5

Brenti, Francesco 1

1 Dipartimento di Matematica, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica, I-00133 Roma, Italy
@article{10_1090_S0894_0347_98_00249_5,
     author = {Brenti, Francesco},
     title = {Lattice paths and {Kazhdan-Lusztig} polynomials},
     journal = {Journal of the American Mathematical Society},
     pages = {229--259},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00249-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00249-5/}
}
TY  - JOUR
AU  - Brenti, Francesco
TI  - Lattice paths and Kazhdan-Lusztig polynomials
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 229
EP  - 259
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00249-5/
DO  - 10.1090/S0894-0347-98-00249-5
ID  - 10_1090_S0894_0347_98_00249_5
ER  - 
%0 Journal Article
%A Brenti, Francesco
%T Lattice paths and Kazhdan-Lusztig polynomials
%J Journal of the American Mathematical Society
%D 1998
%P 229-259
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00249-5/
%R 10.1090/S0894-0347-98-00249-5
%F 10_1090_S0894_0347_98_00249_5
Brenti, Francesco. Lattice paths and Kazhdan-Lusztig polynomials. Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 229-259. doi: 10.1090/S0894-0347-98-00249-5

[1] Bayer, Margaret M., Billera, Louis J. Counting faces and chains in polytopes and posets 1984 207 252

[2] Bjã¶Rner, A., Garsia, A. M., Stanley, R. P. An introduction to Cohen-Macaulay partially ordered sets 1982 583 615

[3] Bjã¶Rner, Anders, Wachs, Michelle Bruhat order of Coxeter groups and shellability Adv. in Math. 1982 87 100

[4] Bjã¶Rner, Anders Orderings of Coxeter groups 1984 175 195

[5] Brenti, Francesco A combinatorial formula for Kazhdan-Lusztig polynomials Invent. Math. 1994 371 394

[6] Comtet, Louis Advanced combinatorics 1974

[7] Deodhar, Vinay V. Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function Invent. Math. 1977 187 198

[8] Deodhar, Vinay V. On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells Invent. Math. 1985 499 511

[9] Dyer, Matthew On the “Bruhat graph” of a Coxeter system Compositio Math. 1991 185 191

[10] Dyer, M. J. Hecke algebras and shellings of Bruhat intervals Compositio Math. 1993 91 115

[11] Hopkins, Charles Rings with minimal condition for left ideals Ann. of Math. (2) 1939 712 730

[12] Goulden, I. P., Jackson, D. M. Combinatorial enumeration 1983

[13] Humphreys, James E. Reflection groups and Coxeter groups 1990

[14] Kazhdan, David, Lusztig, George Representations of Coxeter groups and Hecke algebras Invent. Math. 1979 165 184

[15] Kazhdan, David, Lusztig, George Schubert varieties and Poincaré duality 1980 185 203

[16] Stanley, Richard P. Enumerative combinatorics. Vol. I 1986

[17] Stanley, Richard Generalized 𝐻-vectors, intersection cohomology of toric varieties, and related results 1987 187 213

[18] Stanley, Richard P. Log-concave and unimodal sequences in algebra, combinatorics, and geometry 1989 500 535

[19] Stanley, Richard P. Subdivisions and local ℎ-vectors J. Amer. Math. Soc. 1992 805 851

[20] Verma, Daya-Nand Möbius inversion for the Bruhat ordering on a Weyl group Ann. Sci. École Norm. Sup. (4) 1971 393 398

Cité par Sources :