The Arason invariant and mod 2 algebraic cycles
Journal of the American Mathematical Society, Tome 11 (1998) no. 1, pp. 73-118

Voir la notice de l'article provenant de la source American Mathematical Society

Let $k$ be a field, $X$ over $k$ a smooth variety with function field $K$ and $E$ a quadratic vector bundle over $X$. Assuming that the generic fibre $q$ of $E$ is in $I^3K\subset W(K)$, we compute the image of its Arason invariant \[ e^3(q)\in H^0(X,{\mathcal H}_{\mathrm {\acute {e}t}}^3({\mathbb Z}/2))\] in $CH^2(X)/2$ by the $d_2$ differential of the Bloch-Ogus spectral sequence. This gives an obstruction to $e^3(q)$ being a global cohomology class.
DOI : 10.1090/S0894-0347-98-00248-3

Esnault, Hélène 1 ; Kahn, Bruno 2 ; Levine, Marc 3 ; Viehweg, Eckart 1

1 FB6, Mathematik, Universität Essen, D-45117 Essen, Germany
2 Institut de Mathématiques de Jussieu, Université Paris 7, Case 7012, 75251 Paris Cedex 05, France
3 Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
@article{10_1090_S0894_0347_98_00248_3,
     author = {Esnault, H\~A{\textcopyright}l\~A{\textasciidieresis}ne and Kahn, Bruno and Levine, Marc and Viehweg, Eckart},
     title = {The {Arason} invariant and mod 2 algebraic cycles},
     journal = {Journal of the American Mathematical Society},
     pages = {73--118},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00248-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00248-3/}
}
TY  - JOUR
AU  - Esnault, Hélène
AU  - Kahn, Bruno
AU  - Levine, Marc
AU  - Viehweg, Eckart
TI  - The Arason invariant and mod 2 algebraic cycles
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 73
EP  - 118
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00248-3/
DO  - 10.1090/S0894-0347-98-00248-3
ID  - 10_1090_S0894_0347_98_00248_3
ER  - 
%0 Journal Article
%A Esnault, Hélène
%A Kahn, Bruno
%A Levine, Marc
%A Viehweg, Eckart
%T The Arason invariant and mod 2 algebraic cycles
%J Journal of the American Mathematical Society
%D 1998
%P 73-118
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00248-3/
%R 10.1090/S0894-0347-98-00248-3
%F 10_1090_S0894_0347_98_00248_3
Esnault, Hélène; Kahn, Bruno; Levine, Marc; Viehweg, Eckart. The Arason invariant and mod 2 algebraic cycles. Journal of the American Mathematical Society, Tome 11 (1998) no. 1, pp. 73-118. doi: 10.1090/S0894-0347-98-00248-3

[1] Arason, Jã³N Kr. Cohomologische invarianten quadratischer Formen J. Algebra 1975 448 491

[2] Bloch, Spencer, Ogus, Arthur Gersten’s conjecture and the homology of schemes Ann. Sci. École Norm. Sup. (4) 1974

[3] Bloch, Spencer, Kato, Kazuya 𝑝-adic étale cohomology Inst. Hautes Études Sci. Publ. Math. 1986 107 152

[4] Nakayama, Tadasi On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633

[5] Bourbaki, Nicolas Éléments de mathématique 1981 290

[6] Chevalley, C. Sur les décompositions cellulaires des espaces 𝐺/𝐵 1994 1 23

[7] Colliot-Thã©Lã¨Ne, J.-L. Birational invariants, purity and the Gersten conjecture 1995 1 64

[8] Colliot-Thã©Lã¨Ne, Jean-Louis, Raskind, Wayne 𝒦₂-cohomology and the second Chow group Math. Ann. 1985 165 199

[9] Deligne, Pierre Théorie de Hodge. II Inst. Hautes Études Sci. Publ. Math. 1971 5 57

[10] Schémas en groupes. I: Propriétés générales des schémas en groupes 1970

[11] Demazure, Michel Invariants symétriques entiers des groupes de Weyl et torsion Invent. Math. 1973 287 301

[12] Demazure, Michel Désingularisation des variétés de Schubert généralisées Ann. Sci. École Norm. Sup. (4) 1974 53 88

[13] Everett, C. J., Jr. Annihilator ideals and representation iteration for abstract rings Duke Math. J. 1939 623 627

[14] Esnault, Hã©Lã¨Ne, Kahn, Bruno, Viehweg, Eckart Coverings with odd ramification and Stiefel-Whitney classes J. Reine Angew. Math. 1993 145 188

[15] Venkatarayudu, T. The 7-15 problem Proc. Indian Acad. Sci., Sect. A. 1939 531

[16] Fulton, William Intersection theory 1984

[17] Gabber, Ofer Gersten’s conjecture for some complexes of vanishing cycles Manuscripta Math. 1994 323 343

[18] Gillet, Henri Riemann-Roch theorems for higher algebraic 𝐾-theory Adv. in Math. 1981 203 289

[19] Gros, Michel Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique Mém. Soc. Math. France (N.S.) 1985 87

[20] Théorie des intersections et théorème de Riemann-Roch 1971

[21] Harris, Bruno Torsion in Lie groups and related spaces Topology 1966 347 354

[22] Humphreys, James E. Linear algebraic groups 1975

[23] Illusie, Luc Complexe cotangent et déformations. I 1971

[24] Jacob, Bill, Rost, Markus Degree four cohomological invariants for quadratic forms Invent. Math. 1989 551 570

[25] Jannsen, Uwe Mixed motives and algebraic 𝐾-theory 1990

[26] Jardine, J. F. Higher spinor classes Mem. Amer. Math. Soc. 1994

[27] Jouanolou, J. P. Riemann-Roch sans dénominateurs Invent. Math. 1970 15 26

[28] Kahn, Bruno Descente galoisienne et 𝐾₂ des corps de nombres 𝐾-Theory 1993 55 100

[29] Laghribi, Ahmed Isotropie de certaines formes quadratiques de dimensions 7 et 8 sur le corps des fonctions d’une quadrique Duke Math. J. 1996 397 410

[30] Lam, T. Y. The algebraic theory of quadratic forms 1980

[31] Levine, Marc The indecomposable 𝐾₃ of fields Ann. Sci. École Norm. Sup. (4) 1989 255 344

[32] Levine, Marc The algebraic 𝐾-theory of the classical groups and some twisted forms Duke Math. J. 1993 405 443

[33] Lichtenbaum, Stephen The construction of weight-two arithmetic cohomology Invent. Math. 1987 183 215

[34] Lichtenbaum, S. New results on weight-two motivic cohomology 1990 35 55

[35] Marlin, Roger Anneaux de Chow des groupes algébriques 𝑆𝑈(𝑛), 𝑆𝑝(𝑛), 𝑆𝑂(𝑛), 𝑆𝑝𝑖𝑛(𝑛), 𝐺₂, 𝐹₄ C. R. Acad. Sci. Paris Sér. A 1974 119 122

[36] Merkur′Ev, A. S. On the norm residue symbol of degree 2 Dokl. Akad. Nauk SSSR 1981 542 547

[37] Merkur′Ev, A. S. The group 𝐻¹(𝑋,𝒦₂) for projective homogeneous varieties Algebra i Analiz 1995 136 164

[38] Merkur′Ev, A. S., Suslin, A. A. 𝐾-cohomology of Severi-Brauer varieties and the norm residue homomorphism Izv. Akad. Nauk SSSR Ser. Mat. 1982

[39] Merkur′Ev, A. S., Suslin, A. A. Norm residue homomorphism of degree three Izv. Akad. Nauk SSSR Ser. Mat. 1990 339 356

[40] Merkur′Ev, A. S., Suslin, A. A. The group 𝐾₃ for a field Izv. Akad. Nauk SSSR Ser. Mat. 1990 522 545

[41] Milnor, John W., Stasheff, James D. Characteristic classes 1974

[42] Parimala, R., Srinivas, V. Analogues of the Brauer group for algebras with involution Duke Math. J. 1992 207 237

[43] Peyre, Emmanuel Corps de fonctions de variétés homogènes et cohomologie galoisienne C. R. Acad. Sci. Paris Sér. I Math. 1995 891 896

[44] Quillen, Daniel Higher algebraic 𝐾-theory. I 1973 85 147

[45] Roquette, Peter On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras Math. Ann. 1963 411 439

[46] Scharlau, Winfried Quadratic and Hermitian forms 1985

[47] Serre, Jean-Pierre Cohomologie galoisienne: progrès et problèmes Astérisque 1995

[48] Seshadri, C. S. Line bundles on Schubert varieties 1987 499 528

[49] Suslin, A. A. 𝐾-theory and 𝐾-cohomology of certain group varieties 1991 53 74

[50] Suslin, A. A. Torsion in 𝐾₂ of fields 𝐾-Theory 1987 5 29

[51] Shyevski, M. The fifth invariant of quadratic forms Algebra i Analiz 1990 213 234

[52] Tits, J. Classification of algebraic semisimple groups 1966 33 62

Cité par Sources :