Phragmén-Lindelöf principles on algebraic varieties
Journal of the American Mathematical Society, Tome 11 (1998) no. 1, pp. 1-39

Voir la notice de l'article provenant de la source American Mathematical Society

Estimates of Phragmén–Lindelöf (PL) type for plurisubharmonic functions on algebraic varieties in $\mathbb {C}^n$ have been of interest for a number of years because of their equivalence with certain properties of constant coefficient partial differential operators; e.g. surjectivity, continuation properties of solutions and existence of continuous linear right inverses. Besides intrinsic interest, their importance lies in the fact that, in many cases, verification of the relevant PL-condition is the only method to check whether a given operator has the property in question. In the present paper the property ${PL}({\mathbb R}^n,\omega )$ which characterizes the existence of continuous linear right inverses is investigated. It is also the one closest in spirit to the classical Phragmén–Lindelöf Theorem as various equivalent formulations for homogeneous varieties show. These also clarify the relation between ${PL}({\mathbb R}^n,\omega )$ and the PL-condition used by Hörmander to characterize the surjectivity of differential operators on real-analytic functions. We prove the property ${PL}({\mathbb R}^n,\omega )$ for an algebraic variety $V$ implies that $V_h$, the tangent cone of $V$ at infinity, also has this property. The converse implication fails in general. However, if $V_h$ is a manifold outside the origin, then $V$ satisfies ${PL}({\mathbb R}^n,\omega )$ if and only if the real points in $V_h$ have maximal dimension and if the distance of $z\in V$ to $V_h$ is bounded by $C\omega (|z|)$ as $z$ tends to infinity. In the general case, no geometric characterization of the algebraic varieties which satisfy ${PL}({\mathbb R}^n,\omega )$ is known, nor any of the other PL-conditions alluded to above. Besides these main results the paper contains several auxiliary necessary conditions and sufficient conditions which make it possible to treat interesting examples completely. Since it was submitted they have been applied by several authors to achieve further progress on questions left open here.
DOI : 10.1090/S0894-0347-98-00247-1

Meise, R. 1 ; Taylor, B. 2 ; Vogt, D. 3

1 Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
2 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
3 Fachbereich Mathematik, Bergische Universität, Gaußstraße 20, 42097 Wuppertal, Germany
@article{10_1090_S0894_0347_98_00247_1,
     author = {Meise, R. and Taylor, B. and Vogt, D.},
     title = {Phragm\~A{\textcopyright}n-Lindel\~A{\textparagraph}f principles on algebraic varieties},
     journal = {Journal of the American Mathematical Society},
     pages = {1--39},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00247-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00247-1/}
}
TY  - JOUR
AU  - Meise, R.
AU  - Taylor, B.
AU  - Vogt, D.
TI  - Phragmén-Lindelöf principles on algebraic varieties
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 1
EP  - 39
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00247-1/
DO  - 10.1090/S0894-0347-98-00247-1
ID  - 10_1090_S0894_0347_98_00247_1
ER  - 
%0 Journal Article
%A Meise, R.
%A Taylor, B.
%A Vogt, D.
%T Phragmén-Lindelöf principles on algebraic varieties
%J Journal of the American Mathematical Society
%D 1998
%P 1-39
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00247-1/
%R 10.1090/S0894-0347-98-00247-1
%F 10_1090_S0894_0347_98_00247_1
Meise, R.; Taylor, B.; Vogt, D. Phragmén-Lindelöf principles on algebraic varieties. Journal of the American Mathematical Society, Tome 11 (1998) no. 1, pp. 1-39. doi: 10.1090/S0894-0347-98-00247-1

[1] Ahlfors, Lars V. Conformal invariants: topics in geometric function theory 1973

[2] Andersson, Karl Gustav Propagation of analyticity of solutions of partial differential equations with constant coefficients Ark. Mat. 1971 277 302

[3] Braun, Rã¼Diger W. Hörmander’s Phragmén-Lindelöf principle and irreducible singularities of codimension 1 Boll. Un. Mat. Ital. A (7) 1992 339 348

[4] Braun, Rã¼Diger W. The surjectivity of a constant coefficient homogeneous differential operator on the real analytic functions and the geometry of its symbol Ann. Inst. Fourier (Grenoble) 1995 223 249

[5] Braun, Rã¼Diger W., Meise, Reinhold Generalized Fourier expansions for zero-solutions of surjective convolution operators on 𝒟_{{𝜔}}(ℛ)’ Arch. Math. (Basel) 1990 55 63

[6] Braun, R. W., Meise, R., Taylor, B. A. Ultradifferentiable functions and Fourier analysis Results Math. 1990 206 237

[7] Braun, Rã¼Diger W., Meise, Reinhold, Vogt, Dietmar Applications of the projective limit functor to convolution and partial differential equations 1989 29 46

[8] Braun, R. W., Meise, R., Vogt, D. Characterization of the linear partial differential operators with constant coefficients which are surjective on nonquasianalytic classes of Roumieu type on 𝑅^{𝑁} Math. Nachr. 1994 19 54

[9] Chirka, E. M. Complex analytic sets 1989

[10] Cohoon, David K. Nonexistence of a continuous right inverse for parabolic differential operators J. Differential Equations 1969 503 511

[11] Cohoon, D. K. Nonexistence of a continuous right inverse for linear partial differential operators with constant coefficients Math. Scand. 1971

[12] Fornã¦Ss, John Erik, Narasimhan, Raghavan The Levi problem on complex spaces with singularities Math. Ann. 1980 47 72

[13] Hã¶Rmander, Lars Linear partial differential operators 1963

[14] Hã¶Rmander, Lars An introduction to complex analysis in several variables 1973

[15] Hã¶Rmander, Lars On the existence of real analytic solutions of partial differential equations with constant coefficients Invent. Math. 1973 151 182

[16] Kaneko, Akira On Hartogs type continuation theorem for regular solutions of linear partial differential equations with constant coefficients J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1988 1 26

[17] Meise, R., Taylor, B. A., Vogt, D. Equivalence of slowly decreasing conditions and local Fourier expansions Indiana Univ. Math. J. 1987 729 756

[18] Meise, Reinhold, Taylor, B. Alan, Vogt, Dietmar Caractérisation des opérateurs linéaires aux dérivées partielles avec coefficients constants sur ℰ(ℛ^{𝒩}) admettant un inverse à droite qui est linéaire et continu C. R. Acad. Sci. Paris Sér. I Math. 1988 239 242

[19] Meise, R., Taylor, B. A., Vogt, D. Partial differential operators with continuous linear right inverse 1989 47 62

[20] Meise, R., Taylor, B. A., Vogt, D. Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse Ann. Inst. Fourier (Grenoble) 1990 619 655

[21] Meise, Reinhold, Taylor, B. A., Vogt, Dietmar Equivalence of analytic and plurisubharmonic Phragmén-Lindelöf conditions 1991 287 308

[22] Meise, R., Taylor, B. A., Vogt, D. Indicators of plurisubharmonic functions on algebraic varieties and Kaneko’s Phragmén-Lindelöf condition 1991 231 250

[23] Meise, R., Taylor, B. A., Vogt, D. Continuous linear right inverses for partial differential operators with constant coefficients and Phragmén-Lindelöf conditions 1994 357 389

[24] Meise, R., Taylor, B. A., Vogt, D. Extremal plurisubharmonic functions of linear growth on algebraic varieties Math. Z. 1995 515 537

[25] Meise, R., Taylor, B. A., Vogt, D. 𝜔-hyperbolicity of linear partial differential operators with constant coefficients 1996 157 182

[26] Momm, Siegfried On the dependence of analytic solutions of partial differential equations on the right-hand side Trans. Amer. Math. Soc. 1994 729 752

[27] Narasimhan, Raghavan Introduction to the theory of analytic spaces 1966

[28] Palamodov, V. P. A criterion for splitness of differential complexes with constant coefficients 1991 265 291

[29] Vogt, Dietmar Some results on continuous linear maps between Fréchet spaces 1984 349 381

[30] Zampieri, Giuseppe An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations Boll. Un. Mat. Ital. B (6) 1986 361 392

Cité par Sources :