Intersection theory on \overline{ℳ}_{1,4} and elliptic Gromov-Witten invariants
Journal of the American Mathematical Society, Tome 10 (1997) no. 4, pp. 973-998

Voir la notice de l'article provenant de la source American Mathematical Society

We find a new relation among codimension $2$ algebraic cycles in the moduli space $\bar {\mathcal {M}}_{1,4}$, and use this to calculate the elliptic Gromov-Witten invariants of projective spaces $\mathbb {CP}^2$ and $\mathbb {CP}^3$.
DOI : 10.1090/S0894-0347-97-00246-4

Getzler, E. 1, 2

1 Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, D-53225 Bonn, Germany
2 Department of Mathematics, Northwestern University, Evanston, Illinois 60208-2730
@article{10_1090_S0894_0347_97_00246_4,
     author = {Getzler, E.},
     title = {Intersection theory on \overline{\^a„{\textthreesuperior}}_{1,4} and elliptic {Gromov-Witten} invariants},
     journal = {Journal of the American Mathematical Society},
     pages = {973--998},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00246-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00246-4/}
}
TY  - JOUR
AU  - Getzler, E.
TI  - Intersection theory on \overline{ℳ}_{1,4} and elliptic Gromov-Witten invariants
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 973
EP  - 998
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00246-4/
DO  - 10.1090/S0894-0347-97-00246-4
ID  - 10_1090_S0894_0347_97_00246_4
ER  - 
%0 Journal Article
%A Getzler, E.
%T Intersection theory on \overline{ℳ}_{1,4} and elliptic Gromov-Witten invariants
%J Journal of the American Mathematical Society
%D 1997
%P 973-998
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00246-4/
%R 10.1090/S0894-0347-97-00246-4
%F 10_1090_S0894_0347_97_00246_4
Getzler, E. Intersection theory on \overline{ℳ}_{1,4} and elliptic Gromov-Witten invariants. Journal of the American Mathematical Society, Tome 10 (1997) no. 4, pp. 973-998. doi: 10.1090/S0894-0347-97-00246-4

[1] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C. Holomorphic anomalies in topological field theories Nuclear Phys. B 1993 279 304

[2] Faber, Carel Chow rings of moduli spaces of curves. I. The Chow ring of \overline{ℳ}₃ Ann. of Math. (2) 1990 331 419

[3] Fulton, William Intersection theory 1984

[4] Harris, Joe On the Severi problem Invent. Math. 1986 445 461

[5] Keel, Sean Intersection theory of moduli space of stable 𝑛-pointed curves of genus zero Trans. Amer. Math. Soc. 1992 545 574

[6] Kleiman, Steven L. The transversality of a general translate Compositio Math. 1974 287 297

[7] Knudsen, Finn F. The projectivity of the moduli space of stable curves. II. The stacks 𝑀_{𝑔,𝑛} Math. Scand. 1983 161 199

[8] Kontsevich, Maxim Intersection theory on the moduli space of curves and the matrix Airy function Comm. Math. Phys. 1992 1 23

[9] Kontsevich, M., Manin, Yu. Gromov-Witten classes, quantum cohomology, and enumerative geometry Comm. Math. Phys. 1994 525 562

[10] Ran, Ziv The degree of a Severi variety Bull. Amer. Math. Soc. (N.S.) 1987 125 128

[11] Vainsencher, Israel, Avritzer, Dan Compactifying the space of elliptic quartic curves 1992 47 58

[12] Witten, Edward On the structure of the topological phase of two-dimensional gravity Nuclear Phys. B 1990 281 332

Cité par Sources :