Integral transforms with exponential kernels and Laplace transform
Journal of the American Mathematical Society, Tome 10 (1997) no. 4, pp. 939-972

Voir la notice de l'article provenant de la source American Mathematical Society

Let $X \underset {f}{\longleftarrow } Z \underset {g}{\longrightarrow } Y$ be a correspondence of complex manifolds. We study integral transforms associated to kernels $\exp (\varphi )$, with $\varphi$ meromorphic on $Z$, acting on formal or moderate cohomologies. Our main application is the Laplace transform. In this case, $X$ is the projective compactification of the vector space $V \simeq \mathbb {C}^n$, $Y$ is its dual space, $Z=X\times Y$ and $\varphi (z,w) =\langle z,w \rangle$. We obtain the isomorphisms: \begin{align*} \otimes ^W \mathcal {O}_V \simeq F^\wedge [n] \otimes ^W \mathcal {O}_{V^*},\quad \operatorname {THom}(F,\mathcal {O}_V) \simeq \operatorname {THom}(F^\wedge [n],\mathcal {O}_{V^*}) \end{align*} where $F$ is a conic and $\mathbb {R}$-constructible sheaf on $V$ and $F^\wedge$ is its Fourier-Sato transform. Some applications are discussed.
DOI : 10.1090/S0894-0347-97-00245-2

Kashiwara, Masaki 1 ; Schapira, Pierre 2

1 RIMS, Kyoto University, Kyoto 606-01, Japan
2 Institut de Mathématiques, Université Paris VI, Case 82, 4 pl Jussieu, 75252 Paris, France
@article{10_1090_S0894_0347_97_00245_2,
     author = {Kashiwara, Masaki and Schapira, Pierre},
     title = {Integral transforms with exponential kernels and {Laplace} transform},
     journal = {Journal of the American Mathematical Society},
     pages = {939--972},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00245-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00245-2/}
}
TY  - JOUR
AU  - Kashiwara, Masaki
AU  - Schapira, Pierre
TI  - Integral transforms with exponential kernels and Laplace transform
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 939
EP  - 972
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00245-2/
DO  - 10.1090/S0894-0347-97-00245-2
ID  - 10_1090_S0894_0347_97_00245_2
ER  - 
%0 Journal Article
%A Kashiwara, Masaki
%A Schapira, Pierre
%T Integral transforms with exponential kernels and Laplace transform
%J Journal of the American Mathematical Society
%D 1997
%P 939-972
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00245-2/
%R 10.1090/S0894-0347-97-00245-2
%F 10_1090_S0894_0347_97_00245_2
Kashiwara, Masaki; Schapira, Pierre. Integral transforms with exponential kernels and Laplace transform. Journal of the American Mathematical Society, Tome 10 (1997) no. 4, pp. 939-972. doi: 10.1090/S0894-0347-97-00245-2

[1] Andronikof, Emmanuel Microlocalisation tempérée Mém. Soc. Math. France (N.S.) 1994 176

[2] Bjã¶Rk, Jan-Erik Analytic 𝒟-modules and applications 1993

[3] Brylinski, Jean-Luc, Malgrange, Bernard, Verdier, Jean-Louis Transformation de Fourier géométrique. II C. R. Acad. Sci. Paris Sér. I Math. 1986 193 198

[4] Hotta, R., Kashiwara, M. The invariant holonomic system on a semisimple Lie algebra Invent. Math. 1984 327 358

[5] Kashiwara, Masaki The Riemann-Hilbert problem for holonomic systems Publ. Res. Inst. Math. Sci. 1984 319 365

[6] Kashiwara, Masaki, Schapira, Pierre Sheaves on manifolds 1990

[7] Kashiwara, Masaki, Schmid, Wilfried Quasi-equivariant 𝒟-modules, equivariant derived category, and representations of reductive Lie groups 1994 457 488

[8] Katz, Nicholas M., Laumon, Gã©Rard Transformation de Fourier et majoration de sommes exponentielles Inst. Hautes Études Sci. Publ. Math. 1985 361 418

[9] Malgrange, Bernard Transformation de Fourier géometrique Astérisque 1988

[10] Martineau, A. Distributions et valeurs au bord des fonctions holomorphes 1964 193 326

[11] Sato, Mikio, Kawai, Takahiro, Kashiwara, Masaki Microfunctions and pseudo-differential equations 1973 265 529

Cité par Sources :