Harmonic functions of maximal growth: invertibility and cyclicity in Bergman spaces
Journal of the American Mathematical Society, Tome 10 (1997) no. 4, pp. 761-796

Voir la notice de l'article provenant de la source American Mathematical Society

In the theory of commutative Banach algebras with unit, an element generates a dense ideal if and only if it is invertible, in which case its Gelfand transform has no zeros, and the ideal it generates is the whole algebra. With varying degrees of success, efforts have been made to extend the validity of this result beyond the context of Banach algebras. For instance, for the Hardy space $H^{2}$ on the unit disk, it is known that all invertible elements are cyclic (an element is cyclic if its polynomial multiples are dense), but cyclic elements need not be invertible. In this paper, we supply examples of functions in the Bergman and uniform Bergman spaces on the unit disk which are invertible, but not cyclic. This answers in the negative questions raised by Shapiro, NikolskiÄ­, Shields, Korenblum, Brown, and Frankfurt.
DOI : 10.1090/S0894-0347-97-00244-0

Borichev, Alexander 1 ; kan Hedenmalm, HÃ¥ 2

1 Department of Mathematics, University of Bordeaux I, 351, cours de la Liberation, 33405 Talence, France
2 Department of Mathematics, Lund University, Box 118, 22100 Lund, Sweden
@article{10_1090_S0894_0347_97_00244_0,
     author = {Borichev, Alexander and kan Hedenmalm, H\~A{\textyen}},
     title = {Harmonic functions of maximal growth: invertibility and cyclicity in {Bergman} spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {761--796},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00244-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00244-0/}
}
TY  - JOUR
AU  - Borichev, Alexander
AU  - kan Hedenmalm, HÃ¥
TI  - Harmonic functions of maximal growth: invertibility and cyclicity in Bergman spaces
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 761
EP  - 796
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00244-0/
DO  - 10.1090/S0894-0347-97-00244-0
ID  - 10_1090_S0894_0347_97_00244_0
ER  - 
%0 Journal Article
%A Borichev, Alexander
%A kan Hedenmalm, HÃ¥
%T Harmonic functions of maximal growth: invertibility and cyclicity in Bergman spaces
%J Journal of the American Mathematical Society
%D 1997
%P 761-796
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00244-0/
%R 10.1090/S0894-0347-97-00244-0
%F 10_1090_S0894_0347_97_00244_0
Borichev, Alexander; kan Hedenmalm, HÃ¥. Harmonic functions of maximal growth: invertibility and cyclicity in Bergman spaces. Journal of the American Mathematical Society, Tome 10 (1997) no. 4, pp. 761-796. doi: 10.1090/S0894-0347-97-00244-0

[1] Aharonov, D., Shapiro, H. S., Shields, A. L. Weakly invertible elements in the space of square-summable holomorphic functions J. London Math. Soc. (2) 1974/75 183 192

[2] Borichev, A. A., Hedenmalm, P. J. H. Cyclicity in Bergman-type spaces Internat. Math. Res. Notices 1995 253 262

[3] Brown, Leon, Korenblum, Boris Cyclic vectors in 𝐴^{-∞} Proc. Amer. Math. Soc. 1988 137 138

[4] Brown, Leon, Shields, Allen, Zeller, Karl On absolutely convergent exponential sums Trans. Amer. Math. Soc. 1960 162 183

[5] Dunford, Nelson, Schwartz, Jacob T. Linear Operators. I. General Theory 1958

[6] Duren, Peter, Khavinson, Dmitry, Shapiro, Harold S., Sundberg, Carl Contractive zero-divisors in Bergman spaces Pacific J. Math. 1993 37 56

[7] Duren, P., Khavinson, D., Shapiro, H. S., Sundberg, C. Invariant subspaces in Bergman spaces and the biharmonic equation Michigan Math. J. 1994 247 259

[8] Linear and complex analysis. Problem book 3. Part I 1994

[9] Garnett, John B. Bounded analytic functions 1981

[10] Hedenmalm, Hã¥Kan A factorization theorem for square area-integrable analytic functions J. Reine Angew. Math. 1991 45 68

[11] Hedenmalm, Per Jan Hã¥Kan Open problems in the function theory of the Bergman space 1995 153 169

[12] Korenblum, Boris An extension of the Nevanlinna theory Acta Math. 1975 187 219

[13] Korenblum, Boris A Beurling-type theorem Acta Math. 1976 265 293

[14] Linear and complex analysis. Problem book 3. Part I 1994

[15] Korenblum, Boris Outer functions and cyclic elements in Bergman spaces J. Funct. Anal. 1993 104 118

[16] Nikol′Skiä­, N. K. Izbrannye zadachi vesovoÄ­ approksimatsii i spektral′nogo analiza 1974

[17] Seip, Kristian Beurling type density theorems in the unit disk Invent. Math. 1993 21 39

[18] Shamoyan, F. A. Weak invertibility in some spaces of analytic functions Akad. Nauk Armyan. SSR Dokl. 1982 157 161

[19] Shapiro, Harold S. Weighted polynomial approximation and boundary behavior of analytic functions 1966 326 335

[20] Å Apiro, G. Some observations concerning weighted polynomial approximation of holomorphic functions Mat. Sb. (N.S.) 1967 320 330

[21] Shields, Allen L. Weighted shift operators and analytic function theory 1974 49 128

[22] Linear and complex analysis. Problem book 3. Part I 1994

[23] Shields, Allen L. Cyclic vectors in Banach spaces of analytic functions 1985 315 349

Cité par Sources :