Voir la notice de l'article provenant de la source American Mathematical Society
Fomin, Sergey 1 ; Gelfand, Sergei 2 ; Postnikov, Alexander 1
@article{10_1090_S0894_0347_97_00237_3,
author = {Fomin, Sergey and Gelfand, Sergei and Postnikov, Alexander},
title = {Quantum {Schubert} polynomials},
journal = {Journal of the American Mathematical Society},
pages = {565--596},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {1997},
doi = {10.1090/S0894-0347-97-00237-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00237-3/}
}
TY - JOUR AU - Fomin, Sergey AU - Gelfand, Sergei AU - Postnikov, Alexander TI - Quantum Schubert polynomials JO - Journal of the American Mathematical Society PY - 1997 SP - 565 EP - 596 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00237-3/ DO - 10.1090/S0894-0347-97-00237-3 ID - 10_1090_S0894_0347_97_00237_3 ER -
%0 Journal Article %A Fomin, Sergey %A Gelfand, Sergei %A Postnikov, Alexander %T Quantum Schubert polynomials %J Journal of the American Mathematical Society %D 1997 %P 565-596 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00237-3/ %R 10.1090/S0894-0347-97-00237-3 %F 10_1090_S0894_0347_97_00237_3
Fomin, Sergey; Gelfand, Sergei; Postnikov, Alexander. Quantum Schubert polynomials. Journal of the American Mathematical Society, Tome 10 (1997) no. 3, pp. 565-596. doi: 10.1090/S0894-0347-97-00237-3
[1] , Quantum cohomology of partial flag manifolds ð¹_{ðââ¯ð_{ð}} Comm. Math. Phys. 1995 503 528
[2] , , Schubert cells, and the cohomology of the spaces ðº/ð Uspehi Mat. Nauk 1973 3 26
[3] Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287
[4] Sur les décompositions cellulaires des espaces ðº/ðµ 1994 1 23
[5] Quantum cohomology of flag varieties Internat. Math. Res. Notices 1995 263 277
[6] Désingularisation des variétés de Schubert généralisées Ann. Sci. Ãcole Norm. Sup. (4) 1974 53 88
[7] Transformationen von algebraischem Typ Ann. of Math. (2) 1939 549 559
[8] , Quantum cohomology of flag manifolds and Toda lattices Comm. Math. Phys. 1995 609 641
[9] Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings Internat. Math. Res. Notices 1995 1 15
[10] , Gromov-Witten classes, quantum cohomology, and enumerative geometry Comm. Math. Phys. 1994 525 562
[11] Classes de Chern des variétés de drapeaux C. R. Acad. Sci. Paris Sér. I Math. 1982 393 398
[12] , Polynômes de Schubert C. R. Acad. Sci. Paris Sér. I Math. 1982 447 450
[13] , Fonctorialité des polynômes de Schubert 1989 585 598
[14] The geometry of flag manifolds Proc. London Math. Soc. (3) 1959 253 286
[15] , A mathematical theory of quantum cohomology J. Differential Geom. 1995 259 367
[16] Algorithms in invariant theory 1993
[17] Topological mirrors and quantum rings 1992 96 119
[18] Two-dimensional gravity and intersection theory on moduli space 1991 243 310
Cité par Sources :