Quantum Schubert polynomials
Journal of the American Mathematical Society, Tome 10 (1997) no. 3, pp. 565-596

Voir la notice de l'article provenant de la source American Mathematical Society

DOI : 10.1090/S0894-0347-97-00237-3

Fomin, Sergey 1 ; Gelfand, Sergei 2 ; Postnikov, Alexander 1

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
2 American Mathematical Society, P.O.Box 6248, Providence, Rhode Island 02940-6248
@article{10_1090_S0894_0347_97_00237_3,
     author = {Fomin, Sergey and Gelfand, Sergei and Postnikov, Alexander},
     title = {Quantum {Schubert} polynomials},
     journal = {Journal of the American Mathematical Society},
     pages = {565--596},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00237-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00237-3/}
}
TY  - JOUR
AU  - Fomin, Sergey
AU  - Gelfand, Sergei
AU  - Postnikov, Alexander
TI  - Quantum Schubert polynomials
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 565
EP  - 596
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00237-3/
DO  - 10.1090/S0894-0347-97-00237-3
ID  - 10_1090_S0894_0347_97_00237_3
ER  - 
%0 Journal Article
%A Fomin, Sergey
%A Gelfand, Sergei
%A Postnikov, Alexander
%T Quantum Schubert polynomials
%J Journal of the American Mathematical Society
%D 1997
%P 565-596
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00237-3/
%R 10.1090/S0894-0347-97-00237-3
%F 10_1090_S0894_0347_97_00237_3
Fomin, Sergey; Gelfand, Sergei; Postnikov, Alexander. Quantum Schubert polynomials. Journal of the American Mathematical Society, Tome 10 (1997) no. 3, pp. 565-596. doi: 10.1090/S0894-0347-97-00237-3

[1] Astashkevich, Alexander, Sadov, Vladimir Quantum cohomology of partial flag manifolds 𝐹_{𝑛₁⋯𝑛_{𝑘}} Comm. Math. Phys. 1995 503 528

[2] Bernå¡Teä­N, I. N., Gel′Fand, I. M., Gel′Fand, S. I. Schubert cells, and the cohomology of the spaces 𝐺/𝑃 Uspehi Mat. Nauk 1973 3 26

[3] Hebroni, P. Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287

[4] Chevalley, C. Sur les décompositions cellulaires des espaces 𝐺/𝐵 1994 1 23

[5] Ciocan-Fontanine, Ionuå£ Quantum cohomology of flag varieties Internat. Math. Res. Notices 1995 263 277

[6] Demazure, Michel Désingularisation des variétés de Schubert généralisées Ann. Sci. École Norm. Sup. (4) 1974 53 88

[7] Kober, Hermann Transformationen von algebraischem Typ Ann. of Math. (2) 1939 549 559

[8] Givental, Alexander, Kim, Bumsig Quantum cohomology of flag manifolds and Toda lattices Comm. Math. Phys. 1995 609 641

[9] Kim, Bumsig Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings Internat. Math. Res. Notices 1995 1 15

[10] Kontsevich, M., Manin, Yu. Gromov-Witten classes, quantum cohomology, and enumerative geometry Comm. Math. Phys. 1994 525 562

[11] Lascoux, Alain Classes de Chern des variétés de drapeaux C. R. Acad. Sci. Paris Sér. I Math. 1982 393 398

[12] Lascoux, Alain, Schã¼Tzenberger, Marcel-Paul Polynômes de Schubert C. R. Acad. Sci. Paris Sér. I Math. 1982 447 450

[13] Lascoux, A., Schã¼Tzenberger, M.-P. Fonctorialité des polynômes de Schubert 1989 585 598

[14] Monk, D. The geometry of flag manifolds Proc. London Math. Soc. (3) 1959 253 286

[15] Ruan, Yongbin, Tian, Gang A mathematical theory of quantum cohomology J. Differential Geom. 1995 259 367

[16] Sturmfels, Bernd Algorithms in invariant theory 1993

[17] Vafa, Cumrun Topological mirrors and quantum rings 1992 96 119

[18] Witten, Edward Two-dimensional gravity and intersection theory on moduli space 1991 243 310

Cité par Sources :